Ôn tập chương 5 Đạo hàm

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tính đạo hàm của hàm số

    Đạo hàm của hàm số y=-\frac{x^{3}}{3}+\frac{x^{2}}{2}-x+5 bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y =  - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - x + 5 \hfill \\   \Rightarrow y' =  - \dfrac{{3{x^2}}}{3} + \dfrac{{2x}}{2} - 1 \hfill \\   \Rightarrow y' =  - {x^2} + x - 1 \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu
    Tính đạo hàm

    Đạo hàm của hàm số y=(\frac{3}{x}-2x)(\sqrt{x}-4) bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \left( {\dfrac{3}{x} - 2x} ight)\left( {\sqrt x  - 4} ight) \hfill \\   \Rightarrow y' = \left( {\dfrac{3}{x} - 2x} ight)'\left( {\sqrt x  - 4} ight) + \left( {\sqrt x  - 4} ight)'\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \left( {\dfrac{{ - 3}}{{{x^2}}} - 2} ight)\left( {\sqrt x  - 4} ight) + \left( {\dfrac{1}{{2\sqrt x }}} ight)\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3\sqrt x }}{{{x^2}}} + \dfrac{{12}}{{{x^2}}} - 2\sqrt x  + 8 + \dfrac{3}{{2x\sqrt x }} - \sqrt x  \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3}}{{2x\sqrt x }} - 3\sqrt x  + \dfrac{{12}}{{{x^2}}} + 8 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu
    Tính đạo hàm của hàm số

    Đạo hàm của hàm số y=x\cos2x-\frac{\sin3x}{x} bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = x\cos 2x - \dfrac{{\sin 3x}}{x} \hfill \\   \Rightarrow y' = x'\cos 2x + x\left( {\cos 2x} ight)\prime  - \left( {\dfrac{{\sin 3x}}{x}} ight)\prime  \hfill \\   \Leftrightarrow y' = \cos 2x + x.\left( { - 2\sin 2x} ight) - \dfrac{{3x\cos 3x - \sin 3x}}{{{x^2}}} \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu
    Xác định đạo hàm của hàm số

    Đạo hàm của hàm số f(t)=\frac{t+\tan t}{t-1} bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(t) = \dfrac{{t + \tan t}}{{t - 1}} \hfill \\   \Rightarrow f\prime (t) = \left( {\dfrac{{t + \tan t}}{{t - 1}}} ight)\prime  \hfill \\   \Leftrightarrow f\prime (t) = \dfrac{{\left( {t + \tan t} ight)'\left( {t - 1} ight) - \left( {t - 1} ight)'\left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + \dfrac{1}{{{{\cos }^2}t}}} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + 1 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {2 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu
    Xác định kết quả đạo hàm

    Đạo hàm của hàm số y=\frac{1}{\sqrt{x^{2}-x+1}} bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{\sqrt {{x^2} - x + 1} }} \hfill \\   \Rightarrow y\prime  = \left( {\dfrac{1}{{\sqrt {{x^2} - x + 1} }}} ight)\prime  \hfill \\   \Leftrightarrow y' = \dfrac{{ - \left( {\sqrt {{x^2} - x + 1} } ight)'}}{{{{\left( {\sqrt {{x^2} - x + 1} } ight)}^2}}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - \dfrac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}}}{{{x^2} - x + 1}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - 2x + 1}}{{2\sqrt {{x^2} - x + 1} \left( {{x^2} - x + 1} ight)}} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết
    Tính đạo hàm hàm số

    Đạo hàm của hàm số f(x)=t^{2}x+tx^{2} bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = {t^2}x + t{x^2} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {{t^2}x + t{x^2}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = {t^2} + 2tx \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu
    Tính kết quả đạo hàm

    Đạo hàm của hàm số f(x)=\frac{ax^{2}+b}{c+d} bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{a{x^2} + b}}{{c + d}} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {\dfrac{{a{x^2} + b}}{{c + d}}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{\left( {a{x^2} + b} ight)'\left( {c + d} ight) - \left( {c + d} ight)'\left( {a{x^2} + b} ight)}}{{{{\left( {c + d} ight)}^2}}} \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{2ax\left( {c + d} ight)}}{{{{\left( {c + d} ight)}^2}}} = \dfrac{{2ax}}{{c + d}} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu
    Tìm tập xác định của hàm số f'(x)

    Cho hàm số f(x)=\sqrt{x^{2}-1}. Đạo hàm f'(x) có tập xác định là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = \sqrt {{x^2} - 1}  \hfill \\   \Rightarrow f'\left( x ight) = \left( {\sqrt {{x^2} - 1} } ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{\left( {{x^2} - 1} ight)'}}{{2\sqrt {{x^2} - 1} }} \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{2x}}{{2\sqrt {{x^2} - 1} }} = \dfrac{x}{{\sqrt {{x^2} - 1} }} \hfill \\ \end{matrix}

    => Tập xác định của hàm số f'(x) là:

    {x^2} - 1 > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} ight) \cup \left( {1; + \infty } ight)

  • Câu 9: Thông hiểu
    Tính đạo hàm của hàm số tại một điểm

    Cho hàm số f(x)=\cos^{2}x. Giá trị của f'(\frac{\pi}{6}) bằng: 

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f(x) = {\cos ^2}x \hfill \\   \Rightarrow f'\left( x ight) = \left( {{{\cos }^2}x} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = 2\cos x.\left( { - \sin x} ight) \hfill \\   \Leftrightarrow f'\left( x ight) =  - \sin 2x \hfill \\   \Rightarrow f'\left( {\dfrac{\pi }{6}} ight) =  - \sin \left( {2.\dfrac{\pi }{6}} ight) = \dfrac{{ - \sqrt 3 }}{2} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu
    Tìm hệ số góc của tiếp tuyến

    Cho đường cong có phương trình y=x^{3}-2x+1. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y = {x^3} - 2x + 1 \hfill \\   \Rightarrow y' = 3{x^2} - 2 \hfill \\   \Rightarrow y'\left( 1 ight) = {3.1^2} - 2 = 1 \hfill \\ \end{matrix}

    Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1

  • Câu 11: Thông hiểu
    Viết phương trình tiếp tuyến

    Cho đường cong của phương trình y=x^{4}-x^{2}+1. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng -1 đi qua điểm:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = {x^4} - {x^2} + 1 \hfill \\   \Rightarrow y' = 4{x^3} - 2x \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( { - 1} ight) =  - 4 + 2 = -2} \\   {y\left( { - 1} ight) = 1} \end{array}} ight. \hfill \\\end{matrix}

    => Phương trình tiếp tuyến là:

    y = -2\left( {x + 1} ight) + 1

    Hay y = -2x -1

    Và phương trình đi qua điểm M (1;-3).

  • Câu 12: Thông hiểu
    Viết phương trình tiếp tuyến

    Cho đường cong có phương trình y=\frac{2x-1}{x+1}. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 0:

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow y\prime  = \left( {\dfrac{{2x - 1}}{{x + 1}}} ight)\prime  \hfill \\   \Rightarrow y' = \dfrac{{2\left( {x + 1} ight) - \left( {2x - 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{3}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( 0 ight) = 3} \\   {y\left( 0 ight) =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => Phương trình tiếp tuyền tại điểm có hoành độ bằng 0 là: y = 3x - 1

    Dễ thấy phương trình tiếp tuyến vuông góc với đường thẳng y=-\frac{1}{3}x-6 (vì tích hai hệ số góc bằng -1).

  • Câu 13: Thông hiểu
    Tìm khẳng định sai

    Cho parabol y=x^{2}+3x+2. Khẳng định nào sai trong các khẳng định sau?

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y = {x^2} + 3x + 2 \hfill \\   \Rightarrow y' = 2x + 3 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( 1 ight) = 5} \\   {y\left( 1 ight) = 6} \end{array}} ight. \hfill \\ \end{matrix}

    => Phương trình tiếp tuyến tại điểm M(1; 6) là:

    y = 5\left( {x - 1} ight) + 6 hay y = 5x + 1

    Tiếp tuyến song song với đường thẳng y = -5x + 2 và vuông góc với đường thẳng y=-\frac{1}{5}x-3.

    Mặt khác ta có: - 1 e 5\left( {0 - 1} ight) + 6 = 1

    Vậy tiếp tuyến không đi qua điểm N(0; -1).

  • Câu 14: Thông hiểu
    Tính cường độ dòng điện tại thời điểm t = 2s

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  I\left( t ight) = Q'\left( t ight) \hfill \\   \Rightarrow I = 4t + 1 \hfill \\   \Rightarrow I\left( 2 ight) = 4.2 + 1 = 9\left( A ight) \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu
    Tìm khẳng định sai

    Cho hàm số f(x)=\left | x-2 ight |. Khẳng định nào sau đây là sai?

    Hướng dẫn:

    Ta có: f(2)= 0 (đúng)

    f(x) = \left| {x - 2} ight| \geqslant 0,\forall x => Hàm số nhận giá trị không âm

    Ta lại có:

    \begin{matrix}  f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {x - 2{\text{   khi }}x \geqslant 2} \\   {2 - x{\text{   khi }}x < 2} \end{array}} ight. \hfill \\  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2 - x} ight) = 0 \hfill \\  f\left( 2 ight) = 0 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f\left( 2 ight) \hfill \\ \end{matrix}

    => Hàm số liên tục tại x = 2

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x - 2}}{{x - 2}} = 1 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{2 - x}}{{x - 2}} =  - 1 \hfill \\ \end{matrix}

    Vậy không tồn tại giới hạn \frac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} khi x tiến tới 2

    Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (13%):
    2/3
  • Thông hiểu (87%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1 lượt xem
Sắp xếp theo