Luyện tập Xác suất của biến cố Phần 2

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tính xác suất để nhận lấy được 3 hộp sữa hư

    Có 10 hộp sữa trong đó có 3 hộp hư. Chọn ngẫu nhiên 4 hộp. Xác suất để được ít nhất 1 hộp hư.

    Hướng dẫn:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^4

    Số hộp sữa không bị hư là: 10 - 3 = 7 (hộp)

    Số cách chọn 4 hộp sữa mà không hộp sữa nào bị hư nào là: C_{7}^4

    Số cách để chọn 4 hôp sữa ít nhất một hộp hư là: C_{10}^4 -C_{7}^4 =175 (cách chọn)

    => Xác suất để được ít nhất 1 hộp hư là: P = \frac{{175}}{{C_{10}^4}} = \frac{5}{6}

  • Câu 2: Thông hiểu
    Tính xác suất để có một con số tận cùng là 0

    Chọn ngẫu nhiên một số có 2 chữ số từ các số 00 đến 99. Xác suất để có một con số tận cùng là 0 là:

    Hướng dẫn:

    Chọn một số có hai chữ số bất kì

    Số phần tử không gian mẫu là: C_{100}^1 = 100

    Số cách chọn số có chữ số tận cùng là 0 là: C_{10}^1 = 10

    => Xác suất để có một con số tận cùng là 0 là: P = \frac{{C_{10}^1}}{{C_{100}^1}} = 0,1

  • Câu 3: Thông hiểu
    Tính xác suất

    Chọn ngẫu nhiên một số có 2 chữ số từ các số 00 đến 99. Xác suất để có một con số lẻ và chia hết cho 9:

    Gợi ý:

     Nếu một số có tổng các chữ số chia hết cho 9 thì số đó chia hết cho 9

    Hướng dẫn:

    Chọn một số có hai chữ số bất kì ta có: n\left( \Omega  ight) = C_{100}^1 = 100

    Chọn các số lẻ và chia hết cho 9 là các số: 09; 27; 45; 63; 81; 99

    => Xác suất để có một con số lẻ và chia hết cho 9 là: P = \frac{6}{{100}} = 0,06

  • Câu 4: Vận dụng
    Tính xác suất để tích 2 số ghi trên 2 thẻ là số lẻ

    Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân 2 số ghi trên 2 thẻ với nhau. Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:

    Hướng dẫn:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_9^2 = 36

    Giả sử biến cố T: " Tích hai số ghi trên hai thẻ được rút là số lẻ"

    Nghĩa là cả hai thẻ rút được đều mang số lẻ

    => Số phần tử của biến cố T là n\left( A ight) = C_5^2 = 10

    => Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{10}}{{36}} = \frac{5}{{18}}

  • Câu 5: Vận dụng
    Tính xác suất để tổng số chấm trên hai mặt chia hết cho 3

    Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:

    Gợi ý:

     Nếu số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3.

    Hướng dẫn:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6.6 = 36

    Giả sử N là biến cố " Tổng số chấm trên hai mặt chia hết cho 3" 

    Trường hợp 1: Số chấm xuất hiện trong hai lần gieo là giống nhau

    (3; 3), (6; 6)

    Trường hợp 2: Số chấm xuất hiện trong hai lần gieo là khác nhau

    (1; 2), (1; 5); (2; 4), (3; 6), (4; 5)

    Mỗi khả năng xảy ra có 2 hoán vị nên số phần tử của biến cố là 10 khả năng xảy ra.

    => Số khả năng xảy ra của biến cố N là: 10 + 2 = 12 

    => Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là: P\left( N ight) = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 6: Vận dụng
    Tính xác suất để 2 quyển sách cùng một môn nằm cạnh nhau

    Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:

    Hướng dẫn:

    Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.

    Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau

    Coi 6 quyển sách là hai bộ sách Toán và Vật Lí

    Số cách sắp xếp hai bộ sách là 2! = 2 (cách)

    Cách sắp xếp bộ sách Toán là 3! = 6

    Cách sắp xếp bộ sách Vật Lí là 3! = 6 

    => Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)

    => Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là: P = \frac{{72}}{{720}} = \frac{1}{{10}}

  • Câu 7: Thông hiểu
    Tính xác suất để rút được một bi xanh và 1 bi đỏ

    Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:

    Hướng dẫn:

    Tổng số viên bi là 4 + 6 = 10 (viên bi)

    Số cách lấy hai viên bi từ số viên bi đã cho là: C_{10}^2 (Số phần tử không gian mẫu)

    Số cách để rút được một bi xanh và 1 bi đỏ là: C_4^1.C_6^1

    => Xác suất để rút được một bi xanh và 1 bi đỏ là: P = \frac{{C_4^1.C_6^1}}{{C_{10}^2}} = \frac{8}{{15}}

  • Câu 8: Thông hiểu
    Xác suất để được 3 quả cầu khác màu

    Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:

    Hướng dẫn:

    Số quả cầu có trong bình là: 5 + 4 + 3 = 12 quả

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{12}^3

    Giả sử A là biến cố "3 quả cầu khác màu"

    => Số phần tử của biến cố A là: n\left( A ight) = C_5^1.C_4^1.C_3^1

    => Xác suất để được 3 quả cầu khác màu là P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^1.C_4^1.C_3^1}}{{C_{12}^3}} = \frac{3}{{11}}

  • Câu 9: Thông hiểu
    Tính xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau

    Gieo 3 con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau:

    Hướng dẫn:

    Số phần tử của không gian mẫu là: 6 . 6 . 6 = 216

    Giả sử B là biến cố "số chấm xuất hiện trên 3 con súc sắc đó bằng nhau"

    Ta có các khả năng như sau: (1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)

    => Số phần tử của biến cố B là n\left( B ight) = 6

    => Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau là: 

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{6}{{216}} = \frac{1}{{36}}

  • Câu 10: Vận dụng
    Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là:

    Hướng dẫn:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^5} = 32

    Giả sử C là biến cố "được ít nhất một đồng tiền xuất hiện mặt sấp"

    => Biến cố \overline C " không có đồng tiền xuất hiện mặt sấp"

    => \overline C  = \left\{ {N,N,N,N,N} ight\}

    => n\left( {\overline C } ight) = 1 \Rightarrow P\left( {\overline C } ight) = \frac{1}{{32}}

    => P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{{32}} = \frac{{31}}{{32}}

  • Câu 11: Nhận biết
    Tính xác suất thực nghiệm mặt ngửa

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Hướng dẫn:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 12: Nhận biết
    Mô tả không gian mẫu

    Có hai hộp thẻ. Hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9. Lấy ngẫu nhiên ở mỗi hợp 1 thẻ.

    Hãy mô tả không gian mẫu, kí hiệu “ab” thể hiện hộp thứ nhất lấy thể đánh số a, hộp thứ hai lấy thẻ đánh số b.

    Hướng dẫn:

     Vì hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9

    => \Omega  = \left\{ {16,17,18,{\text{1}}9,26,27,28,29,36,37,38,39,46,47,48,49,56,57,58,59} ight\}

  • Câu 13: Nhận biết
    Tính số phần tử của không gian mẫu

    Một hộp có hai bi trắng được đánh số từ 1 đến 2, ba viên bi xanh được đánh số từ 3 đến 5 và hai viên bi đỏ được đánh số từ 6 đến 7. Lấy ngẫu nhiên hai viên bi. Số phần tử của không gian mẫu là:

    Hướng dẫn:

    Mỗi phần tử của không gian mẫu là một chỉnh hợp chập 2 của 7

    => Số phần tử của không gian mẫu là A_7^2 = 42

  • Câu 14: Nhận biết
    Xác định không gian mẫu

    Gieo hai đồng tiền một lần. Kí hiệu S, N để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu

    Hướng dẫn:

     Không gian mẫu được mô tả như sau:

    \Omega  = \left\{ {SN,NS,SS,NN} ight\}

  • Câu 15: Nhận biết
    Tính số phần tử của không gian mẫu

    Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Tính số phần tử của không gian mẫu.

    Hướng dẫn:

     Lấy 4 viên bi từ 6 + 8 + 10 = 24 viên bi ta được tổ hợp chập 4 của 24 phần tử

    => Khi đó số phần tử của không gian mẫu là: C_{24}^4 = 10626 (phần tử)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (27%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1.031 lượt xem
Sắp xếp theo