Luyện tập Hai mặt phẳng vuông góc

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Số mặt phẳng vuông góc với (P) và (Q)

    Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?

    Hướng dẫn:

    Gọi d là đường thẳng qua M và vuông góc với (P). Do (P)//(Q)⇒d⊥(Q)

    Giả sử (R) là mặt phẳng chứa d. Mà \left\{ {\begin{array}{*{20}{l}}  {d \bot \left( P ight)} \\   {d \bot \left( Q ight)} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {\left( R ight) \bot \left( P ight)} \\   {\left( R ight) \bot \left( Q ight)} \end{array}} ight.

    Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).

  • Câu 2: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?

    Hướng dẫn:

    Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.

    Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào là đúng?

    Hướng dẫn:

     Mệnh đề đúng: "Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương"

  • Câu 4: Thông hiểu
    Chọn khẳng định sai

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?

    Hướng dẫn:

     Ta có:

    BC⊥AB,BC⊥SA⇒BC⊥(SAB)⇒(SBC)⊥(SAB)

    => (SAB) \perp (SAC) đúng.

    ΔABC vuông cân tại B, M là trung điểm AC ⇒ BM⊥AC⇒ BM \perp AC đúng.

    BM⊥AC,BM⊥SA⇒BM⊥(SAC)⇒(SBM)⊥(SAC)

    => (SBM) \perp (SAC) đúng

  • Câu 5: Thông hiểu
    Khẳng định nào sau đây sai

    Cho tứ diện S.ABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa:

    Khẳng định nào sau đây sai

    Ta có: SBC là tam giác đều có H là trung điểm BC nên SH⊥BC

    Mà (SBC)⊥(ABC) theo giao tuyến BC ⇒SH⊥(ABC)⇒SH⊥AB

    => SH \perp AB đúng.

    Ta có HI là đường trung bình của ΔABC nên H//AC⇒HI⊥AB

    => HI \perp AB đúng.

    Ta có \left\{ {\begin{array}{*{20}{l}}  {SH \bot AB} \\   {HI \bot AB} \end{array}} ight.

    ⇒AB⊥(SHI)⇒(SAB)⊥(SHI)

    => (SHI) \perp (SAB) đúng

  • Câu 6: Nhận biết
    Vì sao hai mặt phẳng (SAB) và (SBC) vuông góc

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAB) và (SBC) vuông góc vì

    Hướng dẫn:

    Hai mặt phẳng (SAB) và (SBC) vuông góc vì BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA

  • Câu 7: Thông hiểu
    Hai mặt phẳng (SAC) và (AHK) vuông góc vì

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAC) và (AHK) vuông góc vì:

    Hướng dẫn:

    "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD)" sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC).

    "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đúng 

    Ta có: AH ⊥(SBC) (vì AH ⊥ SB; AH ⊥ BC) nên AH ⊥  SC (1)

    Và AK ⊥ (SCD) (vì AK ⊥ SD; AK ⊥ DC) nên AK ⊥ SC (2)

    Từ (1) và (2) suy ra: SC ⊥ (AHK)

    Từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc.

    Vì chưa đủ điều kiện kết luận SC ⊥ (AHK)

    => "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC ⊥ (AHK)" và "AK ⊥ (SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đều sai

  • Câu 8: Thông hiểu
    Độ dài DE

    Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc. Độ dài DE bằng:

    Hướng dẫn:

    Ta có:

    EB ⊥ (ABCD) vì nó vuông góc với giao tuyến AB của hai mặt phẳng vuông góc đã cho

    => CD ⊥ (EBC) => CD ⊥ CE

    => Tam giác ECD vuông tại C.

    => DE = \sqrt {E{C^2} + C{D^2}}

    Ta có: EB ⊥ BC => Tam giác EBC vuông tại B

    => EC = \sqrt {B{E^2} + C{D^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    => DE = \sqrt {E{C^2} + C{D^2}}

    => DE =a\sqrt{3}

  • Câu 9: Thông hiểu
    Đường thẳng DE vuông góc với các đoạn thẳng nào

    Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc. Đường thẳng DE vuông góc với 

    Hướng dẫn:

    Đường thẳng DE vuông góc với chỉ với AC và BF

  • Câu 10: Nhận biết
    Tang của góc giữa mặt bên và mặt đáy

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng α. Tang của góc giữa mặt bên và mặt đáy bằng:

    Hướng dẫn:

    Tang của góc giữa mặt bên và mặt đáy

    Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)

    => \widehat {SAO} = \alpha

    Gọi M là trung điểm của BC => OM là hình chiếu của SM lên (ABCD) và MO ⊥ BC.

     \begin{matrix}  \widehat {SMO} = \left( {\left( {SBC} ight);\left( {ABCD} ight)} ight) \hfill \\  \tan \widehat {SMO} = \dfrac{{SO}}{{OM}} = \dfrac{{a\sqrt 2 }}{2}.\tan \alpha .\dfrac{2}{a} = \sqrt 2 \tan \alpha  \hfill \\ \end{matrix}

  • Câu 11: Nhận biết
    Xác định mặt phẳng vuông góc với (ABCD)

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Mặt phẳng (ABCD) vuông góc với mặt phẳng:

    Hướng dẫn:

    Hình vẽ minh họa

    Xác định mặt phẳng vuông góc với (ABCD)

    Gọi O là giao điểm của AC và BD. Khi đó ta có:

    SO \bot AC là trung tuyến tam giác cân ở SAC

    BD \bot AC (đường chéo hình thoi)

    SO và BD cắt nhau trong (SBD)

    => AC \bot (SBD)AC \subset \left( {ABCD} ight) \Rightarrow \left( {ABCD} ight) \bot \left( {SBD} ight)

  • Câu 12: Thông hiểu
    Khoảng cách từ điểm S đến mặt phẳng (ABCD)

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Khoảng cách từ điểm S đến mặt phẳng (ABCD)

    Từ S vẽ SO ⊥ (ABCD) ⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau) ⇒ O là tâm đường tròn ngoại tiếp đáy

    \begin{matrix}  S{O^2} = S{A^2} - A{O^2} \hfill \\   = {a^2} - {\left( {\dfrac{{a\sqrt 3 }}{2}} ight)^2} = \dfrac{{{a^2}}}{4} \hfill \\   \Rightarrow SO = \dfrac{a}{2} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết
    Xác định góc giữa hai mặt phẳng (ACD) và (BCD)

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Góc giữa hai mặt phẳng (ACD) và (BCD) là:

    Hướng dẫn:

    Hình vẽ minh họa

    Xác định góc giữa hai mặt phẳng (ACD) và (BCD)

    Các tam giác ABC và ABD là tam giác đều

    => Tam giác ACD cân

    => BN ⊥ CD và AN ⊥ CD

    => \widehat {ANB} là góc của hai mặt phẳng (ACD) và (BCD)

  • Câu 14: Nhận biết
    Mặt phẳng (BCD) vuông góc với mặt phẳng nào

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:

    Hướng dẫn:

    Hình vẽ minh họa:

    Mặt phẳng (BCD) vuông góc với mặt phẳng nào

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BN \bot CD} \\   {AN \bot CD} \end{array} \Rightarrow } ight.CD \bot \left( {ABN} ight)

    CD \subset \left( {BCD} ight) \Rightarrow \left( {BCD} ight) \bot \left( {ABN} ight)

  • Câu 15: Nhận biết
    Xác định đường vuông góc chung của AB và CD

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:

    Hướng dẫn:

     Hình vẽ minh họa:

    Xác định đường vuông góc chung của AB và CD

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AB \bot CM} \\   {AB \bot DM} \end{array}} ight. \Rightarrow AB \bot \left( {CDM} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {CD \bot MN} \\   {AB \bot \left( {CDM} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => MN là đường vuông góc chung của AB  và CD

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 14 lượt xem
Sắp xếp theo