Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:
Số phần tử không gian mẫu là: 52
Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích
=> Số lá bích trong bộ bài là 13 lá
=> Xác suất để được lá bích là:
Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
- Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
Ví dụ về số nguyên tố như: 2, 3, 5, 7, 11, 13, 17, ….
Lấy một số từ dãy số đã cho ta được:
Giả sử A là biến cố "lấy được một số nguyên tố"
Ta có: A = {2} =>
=> Xác suất để lấy được một số nguyên tố là:
Cho hai biến cố A và B có ta kết luận hai biến cố A và B là:
Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)
Suy ra P(A) + P(B) ≠ P(A ∪ B)
=> Hai biến cố A và B không xung khắc
Áp dụng công thức xác suất tổng hai biến cố ta có:
Mà
=> Hai biến cố A và B là hai biến cố độc lập.
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:
Số phần tử của không gian mẫu là:
Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"
=> B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}
=>
=> Xác suất để sau hai lần gieo kết quả như nhau là:
Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Gieo đồng tiền 2 lần nên ta có:
Số phần tử không gian mẫu là:
Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"
=> biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"
=>
=>
=> Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3
Gieo hai con súc sắc cân đối và đồng chất
=> Số phần tử không gian mẫu là:
Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"
Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)
Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị
=>
=> Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:
Một con súc sắc cân đối đồng chất được gieo 5 lần
=> Số phần tử của không gian mẫu là:
Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"
=> Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}
=>
=> Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Gieo một con súc sắc 2 lần. Số phần tử của không gian mẫu là?
Số phần tử không gian mẫu là: n(Ω) = 6 . 6 = 36
Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu là?
Số phần tử không gian mẫu là: n(Ω) = 2 . 2 = 4
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Gieo 3 con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau:
Số phần tử của không gian mẫu là: 6 . 6 . 6 = 216
Giả sử B là biến cố "số chấm xuất hiện trên 3 con súc sắc đó bằng nhau"
Ta có các khả năng như sau: (1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)
=> Số phần tử của biến cố B là
=> Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau là: