Ôn tập chương 2 Tổ hợp - Xác suất

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tính số cách chọn được ba đồ vật khác nhau

    Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.

    Hướng dẫn:

    Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:

    Có 8 cách chọn bút chì.

    Có 6 cách chọn bút bi.

    Có 10 cách chọn cuốn tập.

    Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.

  • Câu 2: Nhận biết
    Tính số cách sắp xếp 4 người vào bàn tròn

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Hướng dẫn:

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 3: Nhận biết
    Số cách chọn các bông hoa có đủ ba màu

    Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu?

    Hướng dẫn:

    Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng - một bông hoa hồng đỏ - một bông hoa hồng vàng), ta có:

    Có 5 cách chọn hoa hồng trắng.

    Có 6 cách chọn hoa hồng đỏ.

    Có 7 cách chọn hoa hồng vàng.

    Vậy theo quy tắc nhân ta có 5 . 6 . 7 = 210 cách

  • Câu 4: Thông hiểu
    Số cách sắp xếp các cuốn sách

    Trên giá sách muốn xếp 20 cuốn sách khác nhau gồm sách tập 1 và sách tập 2. Có bao nhiêu cách sắp xếp sao cho tập 1 và tập 2 đặt cạnh nhau?

    Hướng dẫn:

    Sắp xếp 20 cuốn sách trên giá là một hoán vị của 20 phần tử nên ta có 20! cách sắp xếp.

    Khi hai cuốn tập 1 và tập 2 đặt cạnh nhau (thay đổi vị trí cho nhau), ta coi đó là một phần tử và cùng sắp xếp với 18 cuốn sách còn lại trên giá nên có 2 . 19! cách sắp xếp.

    Vậy có tất cả 20! − 2 . 19! = 19! . 18 cách sắp xếp theo yêu cầu bài toán.

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?

    Hướng dẫn:

    Giả sử các ghế ngồi đánh số từ 1 đến 8.

    Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).

    Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.

    Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.

    Vậy có 3! · 4! = 144 cách.

  • Câu 6: Nhận biết
    Xác định số cách chọn một trong các quả cầu

    Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?

    Hướng dẫn:

    Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.

    Nếu chọn một quả trắng có 6 cách.

    Nếu chọn một quả đen có 3 cách.

    Theo quy tắc cộng, ta có 6 + 3 = 9 cách chọn.

  • Câu 7: Nhận biết
    Tính số phần tử không gian mẫu

    Gieo ngẫu nhiên một con xúc sắc cân đối và đồng chất 3 lần. Khi đó n(Ω) bằng bao nhiêu?

    Hướng dẫn:

    Số khả năng xuất hiện khi gieo một con xúc sắc cân đối và đồng chất lần thứ nhất là 6.

    Số khả năng xuất hiện khi gieo một con xúc sắc cân đối và đồng chất lần thứ hai là 6.

    Số khả năng xuất hiện khi gieo một con xúc sắc cân đối và đồng chất lần thứ ba là 6.

    Vậy số phần tử của không gian mẫu là n(Ω) = 6 . 6 . 6

  • Câu 8: Nhận biết
    Tìm không gian mẫu

    Gieo một đồng tiền liên tiếp 2 lần gồm mặt SN. Tìm không gian mẫu Ω.

    Hướng dẫn:

    Ta có không gian mẫu là Ω = {SN, NS, SS, NN} .

  • Câu 9: Thông hiểu
    Tính số các số tự nhiên được tạo thành

    Cho A = \{0, 1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?

    Gợi ý:

     Số có chữ số tận cùng là 0 hoặc 5 thì số đó chia hết cho 5.

    Hướng dẫn:

     Số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số cần tìm chia hết cho 5 => c ∈ {0; 5}

    => Có 2 cách chọn c

    Số cách chọn a là 5 cách

    Số cách chọn b là 6 cách

    => Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau?

    Hướng dẫn:

     Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Ta có: Số cần tạo là số chẵn => c ∈ {2; 4}

    => Có 2 cách chọn c

    Số cách chọn a là 3 cách

    Số cách chọn b là 2 cách

    => Số các số chẵn gồm 3 chữ số khác nhau được tạo thành là: 3 . 2 . 2 = 12 số

  • Câu 11: Nhận biết
    Tính số các số tự nhiên được tạo thành

    Cho 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?

    Hướng dẫn:

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    => Số các số tự nhiên có 5 chữ số được tạo thành là: {5^5} = 3125 số

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có 3 bạn nam và 2 bạn nữ?

    Hướng dẫn:

    Số cách chọn 3 bạn nam là: C_6^3 = 20 cách

    Số cách chọn 2 bạn nữ là: C_5^2 = 10 cách

    Áp dụng quy tắc nhân ta có: 

    C_6^3.C_5^2 = 20.10 = 200 cách

  • Câu 13: Nhận biết
    Số cách thành lập ban kiểm tra

    Ban chấp hành liên chi đoàn khối 11 có 3 nam, 2 nữ. Cần thành lập một ban kiểm tra gồm 3 người trong đó có ít nhất 1 nữ. Số cách thành lập ban kiểm tra là:

    Hướng dẫn:

    Số cách lập ban kiểm tra có 3 người là: C_5^3 = 10 cách

    Sô cách lập ban kiểm tra có 3 người trong đó không có nữ là: C_3^3 = 1 cách

    => Số cách thành lập ban kiểm tra có ít nhất một nữ là: 10 - 1 = 9 cách

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Hướng dẫn:

     Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{10!}}{{4!}}

    Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346

    Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{9!}}{{4!}}

     

    => Số các số cần phải tìm thỏa mãn điều kiện là: \frac{{10!}}{{4!}} -\frac{{9!}}{{4!}} = 136080

  • Câu 15: Vận dụng cao
    Tìm số tự nhiên n

    Tìm n biết: C_{n}^{1}{{3}^{n-1}}+2C_{n}^{2}{{3}^{n-2}}+3C_{n}^{3}{{3}^{n-3}}+....+nC_{n}^{n}=256

    Hướng dẫn:

     Ta có:

    {\left( {3 + x} ight)^n} = C_n^0{3^n}.{x^0} + C_n^1{.3^{n - 1}}{x^1} + C_n^2{.3^{n - 2}}{x^2} + .... + C_n^n{x^n}(*)

    Đạo hàm hai vế của biểu thức (*) ta được:

    \Rightarrow \left[ {{{\left( {3 + x} ight)}^n}} ight]' = C_n^1{.3^{n - 1}} + 2.C_n^2{.3^{n - 2}}{x^2} + .... + nC_n^n{x^{n - 1}}

    \Rightarrow {\left( {3 + x} ight)^{n - 1}} = C_n^1{.3^{n - 1}} + 2.C_n^2{.3^{n - 2}}{x^2} + .... + nC_n^n{x^{n - 1}}

    Chọn x = 1 ta có:

    \begin{matrix}   \Rightarrow n{.4^{n - 1}} = C_n^1{.3^{n - 1}} + 2.C_n^2{.3^{n - 2}}{1^2} + .... + nC_n^n{1^{n - 1}} \hfill \\   \Rightarrow n{.4^{n - 1}} = 256 \hfill \\   \Rightarrow n = 4 \hfill \\ \end{matrix}

    Vậy n = 4

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Vận dụng (7%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Sắp xếp theo