Luyện tập Hàm số liên tục

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Hàm số liên tục

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2}}}{x}}&{{\text{ khi }}x < 1,x e 0} \\   0&{{\text{ khi }}x = 0} \\   {\sqrt x }&{{\text{  khi }}x \geqslant 1} \end{array}} ight. hàm số f(x) liên tục tại:

    Hướng dẫn:

    Tập xác định: D = \mathbb{R}

    \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 ight)

    Vậy hàm số liên tục tại x = 0

    Hàm số liên tục khi x<1

    hàm số liên tục khi x>1

    Tại x = 1 ta có: f(1)=1

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {1^ - }} x = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x  = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = f\left( 1 ight) \hfill \\ \end{matrix}

    Vậy hàm số liên tục tại x=1

    Hàm số liên tục trên \mathbb{R}

  • Câu 2: Thông hiểu
    Tìm số nghiệm của phương trình

    Cho hàm số f(x)=x^{3}-3x-1. Số nghiệm của phương trình f(x)  =0 trên \mathbb{R} là:

    Hướng dẫn:

    Hàm số f(x)=x^{3}-3x-1 là hàm đa thức có tập xác định là \mathbb{R} nên liên tục trên \mathbb{R}

    => Hàm số liên tục trên mỗi khoảng \left( { - 2; - 1} ight),\left( { - 1;0} ight),\left( {0;2} ight)

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 2} ight) =  - 3} \\   {f\left( { - 1} ight) = 1} \end{array} \Rightarrow } ight.f\left( { - 2} ight).f\left( { - 1} ight) < 0 => Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 2; - 1} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( { - 1} ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 1; 0} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 2 ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( 2 ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { 0; 2} ight)

    Vậy phương trình f(x)  =0 có ít nhất ba nghiệm thuộc khoảng \left( { -2; 2} ight)

    Mặt khác phương trình f(x)  =0 là phương trình bậc ba có nhiều nhất ba nghiệm

    => Phương trình f(x)  =0 có đúng ba nghiệm trên \mathbb{R}

  • Câu 3: Vận dụng
    Nhận xét về số nghiệm của phương trình trên đoạn

    Cho hàm số f(x) liên tục trên đoạn [-1;4] sao cho f(-1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [-1;4] :

    Hướng dẫn:

    Ta có: f(x)=5 =>f(x)−5=0

    Đặt g(x)=f(x)−5

    Khi đó:

    \begin{matrix}\left\{ \begin{gathered}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \hfill \\g(4) = f(4) - 5 = 7 - 5 = 2 \hfill \\\end{gathered} ight. \hfill \\\Rightarrow g( - 1).g(4) < 0 \hfill \\\end{matrix}

    Vậy phương trình g(x)=0 có ít nhất một nghiệm thuộc khoảng (1;4) hay phương trình f(x)=5 có ít nhất một nghiệm thuộc khoảng (1;4).

  • Câu 4: Thông hiểu
    Phải bổ sung thêm giá trị f(0) bằng bao nhiêu

    Cho  f(x)=\frac{x}{\sqrt{x+1}-1} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( 0 ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sqrt {x + 1}  - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 1}  + 1} ight)}}{{x + 1 - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 1}  + 1} ight) = 2 \hfill \\ \end{matrix}

    Để hàm số liên tục trên \mathbb{R} thì 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( 0 ight) = f\left( 0 ight) \hfill \\   \Leftrightarrow 2 = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu
    Tìm a để hàm số liên tục tại x = 3

    Cho hàm số f(x)=\begin{cases}\sqrt{6-2x}+1 & \text{ với } x\leq 3 \\ ax & \text{ với } x> 3 \end{cases}. Với giá trị nào của a thì hàm số f(x) liên tục tại x = 3?

    Hướng dẫn:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) = 3a} \\   \begin{gathered}  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) = 1 \hfill \\  f\left( 3 ight) = 1 \hfill \\ \end{gathered}  \end{array}} ight.

    Hàm số liên tục tại x=3 khi và chỉ khi 

    \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) = f\left( 3 ight) = 1

    \Leftrightarrow 3a = 1 \Leftrightarrow a = \frac{1}{3}

  • Câu 6: Thông hiểu
    Tìm giá trị thực của tham số m

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}\sin \dfrac{1}{x}}&{{\text{ }}khi{\text{ }}x e 0} \\   m&{{\text{ }}khi{\text{ }}x = 0} \end{array}} ight. liên tục tại x = 0

    Hướng dẫn:

    Với mọi x e 0 ta có:

    0 \leqslant \left| {f(x)} ight| \leqslant \left| {{x^2}\sin \frac{1}{x}} ight| \leqslant {x^2} \to 0 khi x \to 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = 0

    Theo giả thiết ta phải có: \mathop {m = f\left( 0 ight) = \lim }\limits_{x \to 0} f\left( x ight) = 0

  • Câu 7: Thông hiểu
    Chọn mệnh đề sai

    Cho hàm số f(x)=-4x^{3}+4x-1. Mệnh đề nào sau đây là sai?

    Hướng dẫn:

    Hàm số f(x)=-4x^{3}+4x-1 là hàm đa thức 

    => Hàm số liên tục trên \mathbb{R}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) =  - 1 < 0} \\   {f\left( { - 2} ight) = 23 > 0} \end{array}} ight.

    => f\left( { - 1} ight).f\left( { - 2} ight) < 0

    => f\left( x ight) = 0 có nghiệm trên \left( { - 2;1} ight)

    Vậy khẳng định sai là khẳng định: "Phương trình f(x) = 0 không có nghiệm trên khoảng (-\infty;1)"

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) =  - 1 < 0} \\   {f\left( {\dfrac{1}{2}} ight) = \dfrac{1}{2} > 0} \end{array}} ight. 

    => f\left( 0 ight).f\left( {\frac{1}{2}} ight) < 0

    => f\left( x ight) = 0 có nghiệm trên \left( {0;\frac{1}{2}} ight)

  • Câu 8: Nhận biết
    Bổ sung thêm giá trị của f(0)

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

    Hướng dẫn:

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 9: Thông hiểu
    Tìm m để hàm số liên tục tại một điểm

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2} - 3x + 2}}{{x - 2}}}&{{\text{ }}khi{\text{ }}x e 2} \\   m&{{\text{  }}khi{\text{ }}x = 2} \end{array}} ight.. Với giá trị nào của m thì hàm số đã cho liên tục tại x = 2?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 2} f\left( x ight) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 3x + 2}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 2} ight)\left( {x - 1} ight)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} ight) = 1 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=2 thì \mathop {\lim }\limits_{x \to 2} f\left( x ight) = f\left( 2 ight) = 1

  • Câu 10: Thông hiểu
    Giá trị của m để hàm số đã cho liên tục

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {3x - 5}&{{\text{ }}khi{\text{ }}x \leqslant  - 2} \\   {mx + 3}&{{\text{ }}khi{\text{ }}x >  - 2} \end{array}} ight.. Giá trị của m để hàm số đã cho liên tục tại x = -2 là:

    Hướng dẫn:

    Ta có:

     \begin{matrix}  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3x - 5} ight) = -11 \hfill \\  f\left( { - 2} ight) = -11 \hfill \\  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \left( {mx + 3} ight) =  - 2m + 3 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=-2 thì 

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = f\left( { - 2} ight)

    \Leftrightarrow  - 2m + 3 = -11 \Rightarrow m = 7

  • Câu 11: Nhận biết
    Hàm số f(x) liên tục trên khoảng

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Hướng dẫn:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 12: Nhận biết
    Hàm số liên tục trên khoảng

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    Hướng dẫn:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 13: Thông hiểu
    Tính f(1)

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x)=\frac{x^{3}-3x+2}{x-1} với mọi xeq 1. Tính f(1)

    Hướng dẫn:

     Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3x + 2}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x + 2} ight){{\left( {x - 1} ight)}^2}}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \left( {x + 2} ight)\left( {x - 1} ight) = 0 \hfill \\ \end{matrix}

    Do hàm số đã cho xác định và liên tục trên \mathbb{R}

    => Hàm số liên tục tại x = 1

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) = f\left( 1 ight) = 0

  • Câu 14: Thông hiểu
    Tính f(0)

    Cho hàm số f(x) xác định và liên tục trên [-3;3] với f(x)=\frac{ \sqrt{x+3}-\sqrt{3-x}}{x} với xeq 0. Tính f(0)

    Hướng dẫn:

    Ta có: Hàm số f(x) xác định và liên tục trên [-3;3]

    => Hàm số liên tục tại x=0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {x + 3}  - \sqrt {3 - x} }}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {x + 3}  - \sqrt {3 - x} } ight)\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}}{{x\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2x}}{{x\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{\sqrt {x + 3}  + \sqrt {3 - x} }} = \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) = \frac{1}{{\sqrt 3 }}

  • Câu 15: Thông hiểu
    Tính f(0) 

    Cho hàm số f(x)= \frac{x}{\sqrt{x+4}-2} với xeq 0 xác định và liên tục trên (-4;+\infty). Tính f(0).

    Hướng dẫn:

    Do hàm số xác định và liên tục trên (-4;+\infty)

    => Hàm số liên tục tại x= 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sqrt {x + 4}  - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{{\left( {\sqrt {x + 4}  - 2} ight)\left( {\sqrt {x + 4}  + 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 4}  + 2} ight) = 4 \hfill \\  \mathop { \Rightarrow \lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) = 4 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (67%):
    2/3
  • Vận dụng (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 13 lượt xem
Sắp xếp theo