Ôn tập chương 4 Giới hạn

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm khẳng định đúng

    Tìm khẳng định đúng trong các khẳng định sau

    (I) f(x) liên tục trên [a; b]f(a). f(b) > 0 thì tồn tại ít nhất một số c ∈ (a;b) sao cho f(c) = 0.

    (II) f(x) liên tục trên [a; b] và trên [b;c] nhưng không liên tục trên (a;c).

    Hướng dẫn:

    Khẳng định (I) sai vì f(a).f(b) >0 vẫn có thể xảy ra trường hợp f(x) = 0 vô nghiệm trên khoảng (a; b).
    Khẳng định (II) sai vì nếu f(x) liên tục trên đoạn (a; b] và trên [b; c) thì liên tục (a; c).

    Vậy cả hai khẳng định đều sai.

  • Câu 2: Vận dụng cao
    Tính giới hạn hàm số tại một điểm

    Tính \mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f\left( x ight) = \sqrt[3]{{4x - 1}} - 3 \hfill \\   = \dfrac{{4x - 28}}{{{{\left( {\sqrt[3]{{4x - 1}}} ight)}^2} + 3\sqrt[3]{{4x - 1}} + 9}} \hfill \\ \end{matrix}

    = \frac{{4\left( {x - 7} ight)}}{{{{\left( {\sqrt[3]{{4x - 1}}} ight)}^2} + 3\sqrt[3]{{4x - 1}} + 9}}

    g\left( x ight) = \sqrt {x + 2}  - 3 = \frac{{x + 2 - 9}}{{\sqrt {x + 2}  + 3}} = \frac{{x - 7}}{{\sqrt {x + 2}  + 3}}

    \begin{matrix}  h\left( x ight) = \dfrac{1}{{\sqrt[4]{{2x + 2}} - 2}} \hfill \\   = \dfrac{{\sqrt[4]{{2x + 2}} + 2}}{{\left( {\sqrt[4]{{2x + 2}} - 2} ight)\left( {\sqrt[4]{{2x + 2}} + 2} ight)}} \hfill \\ \end{matrix}

    = \frac{{\sqrt[4]{{2x + 2}} + 2}}{{\sqrt {2x + 2}  - 4}} = \frac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{{\left( {\sqrt {2x + 2}  - 4} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}

    \begin{matrix}   = \dfrac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{{2x - 14}} \hfill \\   = \dfrac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{{2\left( {x - 7} ight)}} \hfill \\ \end{matrix}

    \Rightarrow \mathop {\lim }\limits_{x \to 7} \left\{ {\left[ {f\left( x ight) - g\left( x ight)} ight].h\left( x ight)} ight\}

    = \mathop {\lim }\limits_{x \to 7} \{ \left[ {\frac{4}{{{{\left( {\sqrt[3]{{4x - 1}}} ight)}^2} + 3\sqrt[3]{{4x - 1}} + 9}} - \frac{1}{{\sqrt {x + 2}  + 3}}} ight]

    .\frac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{x}\}

    = \left( {\frac{4}{{27}} - \frac{1}{6}} ight).\frac{{32}}{2} =  - \frac{8}{{27}}

    Vậy \mathop {\lim Ư}\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}=\dfrac{-8}{27}

  • Câu 3: Vận dụng
    Xét sự liên tục của hàm số

    Hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  { - x\cos x{\text{       }}khi{\text{ }}x < 0} \\   {\dfrac{{{x^2}}}{{1 + x}}{\text{        }}khi{\text{ }}0 \leqslant x < 1} \\   {{x^3}{\text{             }}khi{\text{ x}} \geqslant {\text{1}}} \end{array}} ight.

    Hướng dẫn:

    Ta có: f(x) liên tục tại x e 0; x e 1

    Tại x=0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\cos x} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = 0 \hfill \\  f\left( 0 ight) = 0 \hfill \\ \end{matrix}

    \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight)

    Vậy hàm số liên tục tại x=0

    Tại x=1 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = \dfrac{1}{2} \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3}} ight) = 1 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) e \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số bị gián đoạn tại x=1

    Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.

  • Câu 4: Thông hiểu
    Công thức tính tổng cấp số nhân lùi vô hạn

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Hướng dẫn:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết
    Tính giới hạn

    Tính giới hạn \lim\frac{n + 2}{n^{2} + n + 1}

    Hướng dẫn:

    Ta có:

    \lim \frac{{n + 2}}{{{n^2} + n + 1}}= \lim \dfrac{{n\left( {1 + \dfrac{2}{n}} ight)}}{{{n^2}\left( {1 + \dfrac{1}{n} + \dfrac{2}{{{n^2}}}} ight)}}

    = \lim\left( \dfrac{1}{n}.\dfrac{1 +\dfrac{2}{n}}{1 + \dfrac{1}{n} + \dfrac{2}{n^{2}}} ight) = 0

  • Câu 6: Thông hiểu
    Tính giới hạn

    \lim\left( 2^{n}
+ 3^{n} ight) bằng:

    Hướng dẫn:

    Ta có:

    \lim\left( 2^{n} + 3^{n} ight) =
\lim\left\{ 3^{n}.\left\lbrack \left( \frac{2}{3} ight)^{n} + 1
ightbrack ight\} = + \infty

  • Câu 7: Thông hiểu
    Tính giá trị giới hạn

    Tính giá trị giới hạn \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    Hướng dẫn:

    Ta có:

    \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    = \lim\frac{2n^{2}}{\left(\sqrt[3]{n^{3} - 2n^{2}} ight)^{2} + n.\sqrt[3]{n^{3} - 2n^{2}} +n^{2}}

    = \lim\dfrac{- 2}{\left( \sqrt[3]{\left(1 - \dfrac{2}{n} ight)} ight)^{2} + \sqrt[3]{1 - \dfrac{2}{n}} + 1} =- \dfrac{2}{3}

  • Câu 8: Nhận biết
    Tính giới hạn

    Tính giới hạn \lim_{x ightarrow + \infty}\frac{3x^{2} -
2x}{x^{2} + 1}

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow +\infty}\dfrac{3x^{2} - 2x}{x^{2} + 1} = \lim_{x ightarrow +\infty}\dfrac{3 - \dfrac{2}{x}}{1 + \dfrac{1}{x^{2}}} = \dfrac{3 - 0}{1 + 0}= 3

  • Câu 9: Nhận biết
    Tính giới hạn hàm số

    Tính \lim_{x
ightarrow 3^{+}}\frac{- x^{2} + 5}{x - 3}.

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left( { - {x^2} + 5} ight) =  - 4 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 3} ight) = 0 \hfill \\
  x - 3 > 0,\forall x > 3 \hfill \\ 
\end{gathered}  ight.

    Do đó \lim_{x ightarrow 3^{+}}\frac{-
x^{2} + 5}{x - 3} = - \infty

  • Câu 10: Thông hiểu
    Tính giới hạn hàm số

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 11: Nhận biết
    Tìm hàm số không liên tục

    Hàm số nào dưới đây gián đoạn tại x = 1?

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên hàm số y
= \frac{x^{2} + 2}{x - 1} gián đoạn tại điểm x = 1

  • Câu 12: Nhận biết
    Hàm số đã cho liên tục trên khoảng nào

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hướng dẫn:

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 13: Vận dụng cao
    Tìm số giao điểm của hàm số với trục hoành

    Cho các số thực a,b,c thỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Khi đó số giao điểm của hàm số y = x^{3} + ax^{2} + bx + c với trục Ox là:

    Hướng dẫn:

    Hàm số y = x^{3} + ax^{2} + bx +
c xác định và liên tục trên \mathbb{R}.

    Hàm số y = x^{3} + ax^{2} + bx +
c bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)

    Ta có:

    \lim_{x ightarrow - \infty}y = -
\infty suy ra \exists\alpha < -
2 sao cho f(\alpha) <
0

    Lại có: \lim_{x ightarrow + \infty}y =
+ \infty suy ra \exists\beta >
2 sao cho f(\beta) >
0

    Mặt khác \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
y(2) = 8 + 4a + 2b + c < 0 \\
\end{matrix} ight.

    Từ đó suy ra \left\{ \begin{matrix}
y(\alpha).y( - 2) < 0 \\
y( - 2).y(2) < 0 \\
y(2).y(\beta) < 0 \\
\end{matrix} ight.

    Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)

    Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.

  • Câu 14: Vận dụng
    Tìm khẳng định đúng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 15: Vận dụng cao
    Tìm giá trị k để hàm số liên tục tại điểm

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{x^{2016} + x - 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}\ \ khi\ xeq 1 \\m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm giá trị k để hàm số y = f(x) liên tục tại x = 1

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2016} + x
- 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}

    = \lim_{x ightarrow 1}\frac{\left(
x^{2016} - 1 + x - 1 ight)\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2018x + 1 - (x + 2018)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018} ight)}{2018(x -
1) - (x - 1)}

    = \lim_{x ightarrow
1}\frac{\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2017}

    = \frac{2017.2\sqrt{2019}}{2017} =
2\sqrt{2019}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 498 lượt xem
Sắp xếp theo