Dãy số được gọi là có giới hạn hữu hạn bằng 0 khi n tiến ra dương vô cực nếu với mỗi số dương nhỏ tùy ý cho trước, mọi số hạng của dãy số, kể từ một số hạng nào đó trở đi, đều có giá trị tuyệt đối nhỏ hơn số dương đó.
Kí hiệu .hay
Ví dụ:
Dãy số có giới hạn là nếu có giới hạn bằng 0. Nghĩa là:
Ví dụ:
Chú ý: Dãy số có giới hạn là số thực được gọi là dãy số có giới hạn hữu hạn.
Chú ý: Cách viết thay cho
Định lí 1: Nếu dãy số thỏa mãn kể từ số hạng nào đó trở đi và thì .
Định lí 2: Cho . Ta có:
Cho cấp số nhân vô hạn có công bội q thỏa mãn được gọi là cấp số nhân lùi vô hạn.
Khi đó tổng cấp số nhân lùi vô hạn là:
Ví dụ: Tính giới hạn sau
Hướng dẫn giải
Ta có:
Ta nói dãy số có giới hạn khi , nếu có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trờ đi
Kí hiệu:
Ta nói dãy số có giới hạn khi , nếu
Kí hiệu:
Quy tắc 1: Nếu thì được cho như sau:
Quy tắc 2: Nếu thì được cho như sau:
Dấu của L | ||
+ | ||
- | ||
+ | ||
- |
Quy tắc 3: Nếu và hoặc kể từ một số hạng nào đó trở đi thì được coi như sau:
Dấu của |
Dấu của | |
+ | ||
- | ||
+ | ||
- |
Ví dụ: Tính giới hạn sau:
Hướng dẫn giải
Ta có:
Mà và nên
Ví dụ: Tính giới hạn:
Hướng dẫn giải
Ta có:
Vì và