Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:
Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:
Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:
Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:
Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:
Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách
=> Có 10 . 9 = 90 trận
Mỗi đội đá 2 trận sân nhà, 2 trận sân khách
=> Số trận đấu là 2.90 =180 trận
Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào
được dùng hai lần. Số các cách để chọn những màu cần dùng là:
Số các cách để chọn những màu cần dùng là:
Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:
Cứ 3 đỉnh của đa giác sẽ tạo thành một tam giác
Số cách chọn 3 trong 10 đỉnh của đa giác là:
Vậy số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là: 120 tam giác
Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:
Đa giác đều có 12 cạnh tương ứng với 12 đỉnh
Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)
Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: đoạn thẳng
Mà số cạnh của đa giác là 12 cạnh
=> Số đường chéo thu được là: 66 - 12 = 54 đường chéo
Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:
Gọi số cạnh của đa giác đều là n (cạnh)
=> Đa giác đó có n đỉnh tương ứng
Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)
Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: đoạn thẳng
Mà đa giác đều có 44 đường chéo nên ta có phương trình
Vậy đa giác đều có 11 cạnh
Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:
Ta có:
Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là:
Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Mỗi tập con gồm 3 phần tử (không sắp xếp) là tổ hợp chập 3 của 7 phần tử
=> Số tập hợp con là:
Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Chọn tên 4 học sinh để cho đi du lịch. Hỏi có bao nhiêu cách chọn các học sinh:
Số cách chọn 4 học sinh là tổ hợp chập 4 của 15 học sinh:
Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?
Số cách chọn 2 giáo viên từ nhóm 5 giáo viên là: cách
Số cách chọn 3 học sinh từ nhóm 6 học sinh là: cách
Áp dụng quy tắc nhân ta có số cách chọn một hội đồng là: 10 . 20 = 200 cách
Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
Số cách chọn bạn An là 1 cách.
=> Số cách chọn 3 bạn đi trực (không có An) là: cách
Vậy có 165 cách chọn 4 em đi trực trong đó phải có An.
Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:
Số cách chọn nhóm có 2 người:
Số cách chọn nhóm có 3 người:
Số cách chọn nhóm có 4 người:
Số cách chọn nhóm có 5 người: 1
=> Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Gọi số cạnh của đa giác là n (cạnh)
Điều kiện
=> Số đỉnh tương ứng của đa giác là n đỉnh
Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)
=> Số đoạn thẳng tạo thành là đoạn
Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n
Ta có phương trình:
Vậy đa giác đó có 7 cạnh.
Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: cách
Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: cách
Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: cách
=> Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: cách
Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:
Chọn nhóm có 2 thành viên:
Chọn nhóm có 3 thành viên từ 8 thành viên còn lại:
Chọn nhóm có 5 thành viên từ 5 thành viên còn lại:
=> Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là: