Luyện tập Đạo hàm cấp hai

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tính đạo hàm cấp hai

    Đạo hàm cấp hai của hàm số y=\frac{1}{2x-3} bằng biểu thức nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{2x - 3}} \hfill \\   \Rightarrow y' = \dfrac{{ - \left( {2x - 3} ight)\prime }}{{{{\left( {2x - 3} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {2x - 3} ight)}^2}}} \hfill \\   \Rightarrow y'' =  - 2.\frac{{ - \left[ {{{\left( {2x - 3} ight)}^2}} ight]'}}{{{{\left( {2x - 3} ight)}^4}}} \hfill \\   = \dfrac{{2.2.2.\left( {2x - 3} ight)}}{{{{\left( {2x - 3} ight)}^4}}} = \dfrac{8}{{{{\left( {2x - 3} ight)}^3}}} \hfill \\ \end{matrix}

  • Câu 2: Vận dụng
    Tìm nghiệm của phương trình

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu
    Giải bất phương trình y'' < 0

    Cho hàm số y=3x^{5}-5x^{4}+3x-2. Giải bất phương trình y'' < 0.

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y = 3{x^5} - 5{x^4} + 3x - 2 \hfill \\   \Rightarrow y' = 15{x^4} - 20{x^3} + 3 \hfill \\   \Rightarrow y'' = 60{x^3} - 60{x^2} \hfill \\  y'' < 0 \hfill \\   \Leftrightarrow 60{x^3} - 60{x^2} < 0 \hfill \\   \Leftrightarrow 60{x^2}\left( {x - 1} ight) < 0,\left( {{x^2} > 0,\forall x e 0} ight) \hfill \\   \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 4: Nhận biết
    Tính giá trị của f''(2)

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu
    Tính đạo hàm cấp 3 của hàm số

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu
    Tính đạo hàm cấp 3 của hàm số

    Tính đạo hàm cấp 3 của hàm số f(x)=(2x+5)^{5}

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = {(2x + 5)^5} \hfill \\   \Rightarrow f'\left( x ight) = 5.2.{\left( {2x + 5} ight)^4} = 10.{\left( {2x + 5} ight)^4} \hfill \\   \Rightarrow f''\left( x ight) = 80.{\left( {2x + 5} ight)^3} \hfill \\   \Rightarrow {f^{\left( 3 ight)}}\left( x ight) = 480.{\left( {2x + 5} ight)^2} \hfill \\ \end{matrix}

  • Câu 7: Vận dụng
    Giải phương trình f'(x) = f"(x)

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu
    Tìm x sao cho y" = 20

    Cho hàm số y=\frac{3x-4}{x+2}. Tìm x sao cho y" = 20

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 4}}{{x + 2}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {x + 2} ight) - \left( {3x - 4} ight)}}{{{{\left( {x + 2} ight)}^2}}} = \dfrac{{10}}{{{{\left( {x + 2} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 10.2.\left( {x + 2} ight)}}{{{{\left( {x + 2} ight)}^4}}} = \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  y'' = 20,(xe-2) \hfill \\   \Leftrightarrow \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} = 20 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^3} =  - 1 \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu
    Giải bất phương trình y" > 0

    Cho hàm số y=\frac{3x-2}{1-x}. Giải bất phương trình y" > 0

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{1 - x}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {1 - x} ight) + \left( {3x - 2} ight)}}{{{{\left( {1 - x} ight)}^2}}} = \dfrac{1}{{{{\left( {1 - x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 2.\left( { - 1} ight)\left( {1 - x} ight)}}{{{{\left( {1 - x} ight)}^4}}} = \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' > 0 \hfill \\   \Leftrightarrow \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} > 0 \hfill \\   \Leftrightarrow {\left( {1 - x} ight)^3} > 0,\left( {{\text{Do }}2 > 0} ight) \hfill \\   \Leftrightarrow 1 - x > 0 \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu
    Giải bất phương trình y" < 0

    Cho hàm số y=\frac{1}{(x+1)^{3}}. Giải bất phương trình y" < 0

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{{{(x + 1)}^3}}} \hfill \\   \Rightarrow y' = \dfrac{{ - 3.{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 3}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow y'' = \dfrac{{3.4.{{\left( {x + 1} ight)}^3}}}{{{{\left( {x + 1} ight)}^8}}} = \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' < 0 \hfill \\   \Leftrightarrow \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} < 0 \hfill \\   \Leftrightarrow {\left( {x + 1} ight)^5} < 0,\left( {{\text{Do }}12 > 0} ight) \hfill \\   \Leftrightarrow x <  - 1 \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu
    Tính đạo hàm cấp ba của hàm số tại x = 1

    Cho hàm số y=\frac{2}{1+x}. Tính giá trị của y^{(3)}(1)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{4\left( {1 + x} ight)}}{{{{\left( {1 + x} ight)}^4}}} = \dfrac{4}{{{{\left( {1 + x} ight)}^3}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {1 + x} ight)}^2}}}{{{{\left( {1 + x} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {1 + x} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} =  - \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 12: Vận dụng
    Tính đạo hàm cấp 3 của hàm số tại x = 2

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

    Hướng dẫn:

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu
    Tính giá trị của đạo hàm bậc hai

    Cho hàm số f(x)=sin^{3}x+x^{2}. Tính giá trị của f"(-\frac{\pi}{2}).

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = si{n^3}x + {x^2} \hfill \\   \Rightarrow f'\left( x ight) = 3.{\sin ^2}x.\cos x + 2x \hfill \\   \Rightarrow f''\left( x ight) = 6\sin x.{\cos ^2}x - 3.{\sin ^3}x + 2 \hfill \\   \Rightarrow f''\left( { - \dfrac{\pi }{2}} ight) = 5 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số f(x)=2x^{2}+16cosx-cos2x. Tính giá trị của f"(\pi)

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  f(x) = 2{x^2} + 16cosx - cos2x \hfill \\   \Rightarrow f'\left( x ight) = 4x - 16\sin x + 2\sin 2x \hfill \\   \Rightarrow f'\left( x ight) = 4 - 16\cos x + 4\cos 2x \hfill \\   \Rightarrow f'\left( \pi  ight) = 24 \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu
    Giải phương trình y" = 0

    Cho hàm số y=sin2x-cos2x. Giải phương trình y" = 0

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y = \sin 2x - \cos 2x \hfill \\   \Rightarrow y' = 2\cos 2x + 2\sin 2x \hfill \\   \Rightarrow y'' =  - 4\sin 2x + 4\cos 2x \hfill \\  y'' = 0 \hfill \\   \Leftrightarrow  - 4\sin 2x + 4\cos 2x = 0 \hfill \\   \Leftrightarrow \sin 2x = \cos 2x \hfill \\   \Leftrightarrow \tan 2x = 1 \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{4} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{8} + k\dfrac{\pi }{2},\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (7%):
    2/3
  • Thông hiểu (73%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 13 lượt xem
Sắp xếp theo