Luyện tập Quy tắc đếm phần 2

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 13 câu
  • Điểm số bài kiểm tra: 13 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Số các số tự nhiên có 5 chữ số thỏa mãn điều kiện

    Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:

    Hướng dẫn:

    Số tự nhiên có 5 chữ số khác nhau có dạng: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Số cách chọn a là: 5 cách (vì a khác 0)

    Số cách chọn b là: 5 cách

    Số cách chọn c là: 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là: 2 cách

    => Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số

  • Câu 2: Thông hiểu
    Số các số tự nhiên có 4 chữ số được tạo thành

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Hướng dẫn:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 3: Thông hiểu
    Có thể lập được bao nhiêu kế hoạch

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).

    Hướng dẫn:

    Ta có: 1 tuần = 7 ngày

    Mà mỗi ngày A đến thăm một bạn.

    Ngày thứ nhất có 12 cách chọn

    Ngày thứ hai có 11 cách chọn

    Ngày thứ ba có 10 cách chọn

    Ngày thứ tư có 9 cách chọn

    Ngày thứ năm có 8 cách chọn

    Ngày thứ sáu có 7 cách chọn

    Ngày thứ bảy có 6 cách chọn

    => Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch

  • Câu 4: Vận dụng
    Số kế hoạch có thể tạo thành

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần

    Hướng dẫn:

    Một tuần có bảy ngày và mỗi ngày thăm một bạn.

    Có 12 cách chọn bạn vào ngày thứ nhất.

    Có 11 cách chọn bạn vào ngày thứ hai.

    Có 10 cách chọn bạn vào ngày thứ ba.

    Có 9 cách chọn bạn vào ngày thứ tư.

    Có 8 cách chọn bạn vào ngày thứ năm.

    Có 7 cách chọn bạn vào ngày thứ sáu.

    Có 6 cách chọn bạn vào ngày thứ bảy.

    Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.

  • Câu 5: Thông hiểu
    Số cách chọn số chẵn gồm ba chữ số khác nhau

    Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:

    Hướng dẫn:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số được chọn là số chẵn => c = {2; 4}

    => Số cách chọn c là 2 cách

    Số cách chọn a là 4 cách 

    Số cách chọn b là 3 cách

    => Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số

  • Câu 6: Thông hiểu
    Số các số tự nhiên gồm 5 chữ số

    Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Hướng dẫn:

    Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là: \overline {3bcde}

    Do không có điều kiện về các chữ số còn lại

    => Số cách chọn các chữ số b, c, d, e là {7^4} = 2401 cách

    => Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số

  • Câu 7: Thông hiểu
    Số cách sắp xếp hàng dọc

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

    Hướng dẫn:

    Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)

    Xếp 3 nam có: 3.2.1 = 6 cách xếp

    Xếp 3 nữ có: 3.2.1 = 6 cách xếp

    Vậy có 2.(3.2.1)2 = 72 cách xếp

  • Câu 8: Nhận biết
    Số con đường đi từ thành phố A đến thành phố D

    Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường. không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D:

    Hướng dẫn:

     Số cách đi từ A đến D bằng cách đi từ A đến B rồi đến D là 3.2 = 6

    Số cách đi từ A đến D bằng cách đi từ A đến C rồi đến D là 2.3 = 6

    => Số con đường đi từ thành phố A đến thành phố D là: 6 + 6 = 12 đường

  • Câu 9: Nhận biết
    Số các số tự nhiên có thể lập thành

    Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số

    Hướng dẫn:

    Số các số có 1 chữ số là: 3

    Số các số có 2 chữ số là: 32 = 9

    Số các số có 3 chữ số là: 33 = 27

    => Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39

  • Câu 10: Nhận biết
    Số các số có 2 chữ số mà tất cả các chữ số đều lẻ

    Có bao nhiêu số có 2 chữ số mà tất cả các chữ số đều lẻ:

    Hướng dẫn:

    Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Do tất cả các chữ số đều lẻ => a,b \in \left\{ {1;3;5;7;9} ight\}

    Số cách chọn a là 5 cách

    Số cách chọn b là 5 cách

    => Số các số có 2 chữ số mà tất cả các chữ số đều lẻ là  5 . 5 = 25 số

  • Câu 11: Nhận biết
    Tính số điện thoại tối đa có ở huyện Củ Chi

    Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:

    Hướng dẫn:

    Số điện thoại cần tìm có dạng \overline {790abcd}

    Số cách chọn a có 10 cách

    Số cách chọn b có 10 cách

    Số cách chọn c có 10 cách

    Số cách chọn d có 10 cách 

    => Có tối đa số điện thoại là: 10.10.10.10 = 104 = 10 000 số

  • Câu 12: Thông hiểu
    Tìm số các số tự nhiên thỏa mãn điều kiện

    Từ các số 1, 2, 3 có thể lập được bao nhiêu số khác nhau và mỗi số có các chữ số khác nhau:

    Hướng dẫn:

    Dãy số đã cho có 3 chữ số 

    Mà những số cần tìm có các chữ số khác nhau

    => Số tự nhiên cần tìm có tối đa là 3 chữ số

    Số có 1 chữ số: 3 số

    Số có 2 chữ số khác nhau: 3 . 2 = 6 số

    Số có 3 chữ số khác nhau: 3 . 2 = 6 số

    => Có thể lập được số các số khác nhau và mỗi số có các chữ số khác nhau là: 3 + 6 + 6 = 15 số

  • Câu 13: Thông hiểu
    Chọn khẳng định sai

    Cho hai tập hợp A = {a, b, c, d}; B = {c, d, e}. Chọn khẳng định sai trong các khẳng định
    sau:

    Hướng dẫn:

    N(A) = 4 => Khẳng định đúng

    N(B) = 3 => Khẳng định đúng

    A ∩ B = {c, d} => N(A ∩ B) = 2 là khẳng định đúng

    A ∪ B = {a, b, c, e} => N(A ∪ B) = 4 => Khẳng định sai là N(A ∪ B) = 7

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (31%):
    2/3
  • Thông hiểu (62%):
    2/3
  • Vận dụng (8%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1.820 lượt xem
Sắp xếp theo