Luyện tập Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm khoảng biến thiên R

    Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x_1 ≤ x_2 ≤ x_3 ≤ ... ≤ x_n. Khi đó khoảng biến thiên R của mẫu số liệu bằng:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu bằng: R = x_n – x_1

  • Câu 2: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:

    21

    17

    22

    18

    20

    17

    15

    13

    15

    20

    15

    12

    18

    17

    25

    17

    21

    15

    12

    18

    16

    23

    14

    18

    19

    13

    16

    19

    18

    17

    Khoảng biến thiên R của mẫu số liệu trên là:

    Hướng dẫn:

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.

    Khoảng biến thiên của mẫu số liệu trên là: R=25-12=13

  • Câu 3: Thông hiểu
    Tính giá trị của phương sai

    Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Tần số

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần bằng:

    Hướng dẫn:

    Kết quả trung bình là:

    \overline x  = \frac{{9.1 + 10.1 + 11.3 + 12.5 + 13.8 + 14.13 + 15.19 + 16.24 + 17.14 + 18.10 + 19.2}}{{100}} = 15,23

    Giá trị của phương sai là:

     \begin{matrix}  {S^2} = \dfrac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + {n_3}{x_4}^2 + ... + {n_k}{x_k}^2} ight) - {\left( {\overline x } ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{100}}({1.9^2} + {1.10^2} + {3.11^2} + {5.12^2} + {8.13^2} + {13.14^2} \hfill \\   + {19.15^2} + {24.16^2} + {14.17^2} + {10.18^2} + {2.19^2}) - {\left( {15,23} ight)^2} \hfill \\   \Rightarrow {S^2} \approx 3,96 \hfill \\ \end{matrix}

  • Câu 4: Nhận biết
    Độ lệch chuẩn là gì

    Độ lệch chuẩn là gì?

    Hướng dẫn:

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 5: Thông hiểu
    Tính độ lệch chuẩn

    Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:

    Hướng dẫn:

    Số tiền nước trung bình là:

    \overline x  = \frac{{56 + 45 + 103 + 239 + 125}}{5} = 113,6

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{5}\left( {{{56}^2} + {{45}^2} + {{103}^2} + {{239}^2} + {{125}^2}} ight) - {\left( {113,6} ight)^2} \hfill \\   \Rightarrow {S^2} = 4798,24 \hfill \\ \end{matrix}

    Độ lệch chuẩn là: 

    \Rightarrow S = \sqrt {{S^2}}  = \sqrt {4798,24}  \approx 69,27

  • Câu 6: Vận dụng
    Tìm m và n

    Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:

    Số sách

    1

    2

    3

    4

    5

    6

     

    Số học sinh đọc

    10

    m

    8

    6

    n

    3

    n = 40

    Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.

    Hướng dẫn:

     Số trung bình là: 

    \overline x  = \frac{{10.1 + 2.m + 8.3 + 4.6 + 5.n + 6.3}}{{40}} = \frac{{76 + 2m + 5n}}{{40}}

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{10.1}^2} + m{{.2}^2} + {{8.3}^2} + {{6.4}^2} + n{{.5}^2} + {{3.6}^2}} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{40}}\left( {286 + 4m + 25n} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Kiểm tra được: m = 8 và n = 5 thỏa mãn.

  • Câu 7: Vận dụng
    Tìm giá trị ngoại lệ

    Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:

    0

    5

    7

    6

    2

    5

    9

    7

    6

    9

    20

    6

    10

    7

    5

    8

    9

    7

    8

    5

    Giá trị ngoại lệ trong mẫu số liệu trên là:

    Hướng dẫn:

    Ta có bảng tần số sau:

    Số cuộn phim

    0

    2

    5

    6

    7

    8

    9

    10

    20

     

    Số nhiếp ảnh gia

    1

    1

    4

    3

    4

    2

    3

    1

    1

    n = 20

    Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.

    Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.

    => Q2 = 7.

    - Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.

    Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.

    Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.

    => Q1 = 5.

    Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.

    Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.

    Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.

    => Q3 = (8 + 9) : 2 = 8,5.

    Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.

    Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.

    Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)

    Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.

    Vậy mẫu số liệu có giá trị ngoại lệ là 20.

  • Câu 8: Nhận biết
    Công thức tính phương sai

    Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng

    Hướng dẫn:

     Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng bình phương của độ lệch chuẩn.

  • Câu 9: Thông hiểu
    Tính phương sai

    Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:

    Sản lượng

    20

    21

    22

    23

    24

     

    Tần số

    5

    8

    11

    10

    6

    n = 40

    Phương sai là:

    Hướng dẫn:

    Sản lượng lúa trung bình là:

    \overline x  = \frac{{5.20 + 8.21 + 11.22 + 10.23 + 6.24}}{{40}} = 22,1

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{5.20}^2} + {{8.21}^2} + {{11.22}^2} + {{10.23}^2} + {{6.24}^2}} ight) - {\left( {22,1} ight)^2} \hfill \\   \Rightarrow {S^2} = 1,54 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu
    Phát biểu nào sau đây sai

    Phát biểu nào sau đây sai?

    Hướng dẫn:

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 11 lượt xem
Sắp xếp theo