Luyện tập Tọa độ của vectơ

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tọa độ điểm B’

    Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:

    Hướng dẫn:

     Vì B' đối xứng với B qua A => A là trung điểm của BB'

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_{B'}} = 2{x_A}} \\   {{y_B} + {y_{B'}} = 2{x_A}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 2{x_A} - {x_B}} \\   {{y_{B'}} = 2{x_A} - {y_B}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 4} \\   {{y_{B'}} = 1} \end{array}} ight. \Leftrightarrow B'\left( {4;1} ight) \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu
    Tính tích của hai vectơ

    Trong mặt phẳng Oxy, cho \overrightarrow{u}=2\overrightarrow{i}-\overrightarrow{j}\overrightarrow{v}=3\overrightarrow{i}+2\overrightarrow{j}. Tính \overrightarrow{u}\times \overrightarrow{v}

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  \vec u = 2\vec i - \vec j \Rightarrow \vec u = \left( {2; - 1} ight) \hfill \\  \vec v = 3\vec i + 2\vec j \Rightarrow \vec v = \left( {3;2} ight) \hfill \\  \vec u \times \vec v = 2.3 + \left( { - 1} ight).2 = 4 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu
    Chọn kết luận sai

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=3\overrightarrow{i}+6\overrightarrow{j}\overrightarrow{b}=8\overrightarrow{i}-4\overrightarrow{j}. Kết luận nào sau đây sai?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \vec a = 3\vec i + 6\vec j \Rightarrow \vec a = \left( {3;6} ight) \hfill \\  \vec b = 8\vec i - 4\vec j \Rightarrow \vec b = \left( {8; - 4} ight) \hfill \\   \Rightarrow \vec a.\vec b = 3.8 + \left( { - 4} ight).6 = 0 \hfill \\   \Rightarrow \left| {\vec a.\vec b} ight| = 0 \hfill \\   \Rightarrow \vec a \bot \vec b \hfill \\ \end{matrix}

    Vậy kết luận sai là: |\overrightarrow{a}|\times |\overrightarrow{b}|=0

  • Câu 4: Thông hiểu
    Tìm tọa độ điểm A

    Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:

    Hướng dẫn:

    Theo bài ra:

    G là trọng tâm tam giác ABC nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_B} + {x_C} = 3{x_G}} \\   {{y_A} + {y_B} + {y_C} = 3{y_G}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 1} \\   {{y_A} = 4} \end{array}} ight. \Rightarrow A\left( {1;4} ight)

  • Câu 5: Thông hiểu
    Tìm x

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=(-5;0),\overrightarrow{b}=(4;x). Tìm x để \overrightarrow{a}\overrightarrow{b} cùng phương.

    Hướng dẫn:

     Để \overrightarrow{a}\overrightarrow{b} cùng phương thì 

    \begin{matrix}{a_1}{b_2} - {a_2}{b_1} = 0 \hfill \\   \Rightarrow  - 5.x - 0.4 = 0 \hfill \\   \Rightarrow x = 0 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu
    Tính giá trị của x

    Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng 5\sqrt{5} là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  = \left( {x - 6;10} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {AB} } ight| = \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  \hfill \\  \left| {\overrightarrow {AB} } ight| = 5\sqrt 5  \hfill \\   \Leftrightarrow \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  = 5\sqrt 5  \hfill \\   \Leftrightarrow {x^2} - 12x + 136 = 125 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 11} \\   {x = 1} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 7: Nhận biết
    Tìm tọa độ điểm A

    Trong mặt phẳng tọa độ Oxy, cho \overrightarrow{OA}=(2;10). Đâu là tọa độ của điểm A?

    Hướng dẫn:

    Ta có: O(0; 0)

    \begin{matrix}  \overrightarrow {OA}  = \left( {{x_A} - {x_O};{y_A} - {y_B}} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 2} \\   {{y_A} = 10} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 8: Nhận biết
    Biểu diễn vectơ

    Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ \overrightarrow{OC} theo các vectơ đơn vị là

    Hướng dẫn:

    \begin{matrix}  O\left( {0;0} ight) \hfill \\  \overrightarrow {OC}  = \left( {{x_C} - {x_O};{y_C} - {y_O}} ight) = \left( { - 2; - 5} ight) \hfill \\   \Rightarrow \overrightarrow {OC}  =  - 2\overrightarrow i  - 5\overrightarrow j  \hfill \\ \end{matrix}

  • Câu 9: Nhận biết
    Tìm tọa độ vectơ

    Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \overrightarrow{MN}

    Hướng dẫn:

    Ta có: 

    \overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_M} - {y_N}} ight) = \left( { - 1;1} ight)

  • Câu 10: Thông hiểu
    Tìm tọa độ trung điểm BC

    Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:

    Hướng dẫn:

    Ta có: I là tâm hình chữ nhật ABCD

    => I là trung điểm của AC và I là trung điểm của BD

    Khi đó ta tìm tọa độ điểm B và điểm C

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_D} = 2{x_I}} \\   {{y_B} + {y_D} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = 2{x_I} - {x_D}} \\   {{y_B} = 2{y_I} - {y_D}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = -4} \\   {{y_B} =  - 1} \end{array}} ight. \Rightarrow B\left( {-4; - 1} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_C} = 2{x_I}} \\   {{y_A} + {y_C} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} = 2{x_I} - {x_A}} \\   {{y_C} = 2{y_I} - {y_A}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} =  - 2} \\   {{y_C} =  - 3} \end{array}} ight. \Rightarrow C\left( { - 2; - 3} ight) \hfill \\ \end{matrix}

    => Gọi M là trung điểm của BC có tọa độ là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_C} = 2{x_M}} \\   {{y_B} + {y_C} = 2{y_M}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x_B} + {x_C}}}{2} = {x_M}} \\   {\dfrac{{{y_B} + {y_C}}}{2} = {y_M}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_M} =  - 3} \\   {{y_M} =  - 2} \end{array}} ight. \Rightarrow M\left( { - 3; - 2} ight) \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 16 lượt xem
Sắp xếp theo