Luyện tập Đường thẳng trong mặt phẳng tọa độ

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Mối liên hệ giữa hai đường thẳng

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu
    Viết phương trình đường trung trực của AB

    Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:

    Hướng dẫn:

    Gọi d là đường trung trực của đoạn thẳng AB.

    Gọi M là trung điểm của AB với A(–2; 3) và B(4; –1).

    Ta suy ra

    \left\{ {\begin{array}{*{20}{l}}  {{x_M} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{ - 2 + 4}}{2} = 1} \\   {{y_M} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{3 - 1}}{2} = 1} \end{array}} ight.

    Khi đó ta có M(1; 1).

    Với A(–2; 3) và B(4; –1) ta có: \overrightarrow {AB}  = \left( {6; - 4} ight)

    Đường thẳng d là đường trung trực của AB nên đường thẳng d đi qua trung điểm M(1; 1) của AB và nhận \overrightarrow {AB}  = \left( {6; - 4} ight) làm vectơ pháp tuyến.

    Suy ra phương trình tổng quát của d là:

    \begin{array}{*{20}{l}}  {6\left( {x-1} ight)--4\left( {y-1} ight) = 0} \\   \begin{gathered}   \Leftrightarrow 6x-4y-2 = 0 \hfill \\   \Leftrightarrow 3x-2y-1 = 0 \hfill \\ \end{gathered}  \end{array}

  • Câu 3: Thông hiểu
    Tìm m

    Tìm m để góc tạo bởi hai đường thẳng ∆1:\sqrt{3}x -y+7=0∆_2: mx + y + 1 = 0 một góc bằng 30°.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{\sqrt {3 + 1} .\sqrt {{m^2} + 1} }} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \cos {30^0} \hfill \\   \Leftrightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\   \Leftrightarrow \sqrt 3 \sqrt {{m^2} + 1}  = \left| {m\sqrt 3  - 1} ight| \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = {\left( {m\sqrt 3  - 1} ight)^2} \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = 3{m^2} - 2m\sqrt 3  + 1 \hfill \\   \Leftrightarrow 2m\sqrt 3  + 2 = 0 \hfill \\   \Leftrightarrow m =  - \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu
    Viết phương trình đường thẳng AB

    Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?

    Hướng dẫn:

    Với A(4; 0), B(0; 5) ta có: \overrightarrow {AB}  = \left( { - 4;5} ight)

    Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận \overrightarrow {AB}  = \left( { - 4;5} ight) làm vectơ chỉ phương.

    Khi đó đường thẳng AB nhận \overrightarrow n  = \left( {5;4} ight) làm vectơ pháp tuyến.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến \overrightarrow n  = \left( {5;4} ight) nên có phương trình tổng quát là: 5\left( {x-4} ight) + 4\left( {y-0} ight) = 0

    \begin{matrix}   \Leftrightarrow 5x + 4y-20 = 0 \hfill \\   \Leftrightarrow 4y = -5x + 20 \hfill \\   \Leftrightarrow y = \dfrac{{ - 5}}{4}x + 5 \hfill \\ \end{matrix}

    Do đó phương trình ở phương án y=\frac{-5}{4}x+15 không phải phương trình AB.

    Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là: \frac{x}{4}+\frac{y}{5}=1

    Do đó phương án \frac{x}{4}+\frac{y}{5}=1 đúng.

    Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là: 

    \frac{{x - 4}}{{0 - 4}} = \frac{{y - 0}}{{5 - 0}} \Leftrightarrow \frac{{x - 5}}{{ - 4}} = \frac{y}{5}

    Do đó phương án \frac{x-4}{-4}=\frac{y}{5} đúng.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương \overrightarrow {AB}  = \left( { - 4;5} ight) nên có phương trình tham số là: \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight. (t ∈ R)

    Do đó phương án \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight.(t ∈ R) đúng.

  • Câu 5: Thông hiểu
    Chọn mệnh đề đúng

    Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Giả sử: A\left( {1; - 2} ight) \in \left( d ight):x - 2y + 5 = 0

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0\left( L ight)

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0 loại đáp án (d) đi qua A(1; –2).

    Ta có (d):x−2y+5=0

    ⇒VTPT \overrightarrow n  = \left( {1; - 2} ight)

    ⇒VTCP \overrightarrow u  = \left( {2;1} ight) loại đáp án (d) có phương trình tham số: \left\{\begin{matrix}x=t\\ y=-2t\end{matrix}ight.

    Ta có (d):x−2y+5=0

    \Rightarrow y = \frac{1}{2}x + \frac{5}{2} hệ số góc k = \frac{1}{2}.

  • Câu 6: Thông hiểu
    Viết phương trình đường thẳng d

    Phương trình của đường thẳng (d) song song với (d’): 6x + 8y – 1 = 0 và cách (d’) một đoạn bằng 2 là:

    Hướng dẫn:

    (d’) có vectơ pháp tuyến là \overrightarrow {n'}  = \left( {6;8} ight)

    Vì (d) // (d’) nên (d) cũng nhận \overrightarrow {n'}  = \left( {6;8} ight) làm vectơ pháp tuyến.

    Do đó phương trình (d) có dạng: 6x + 8y + c = 0\left( {c e -1} ight)

    Chọn A\left( {\frac{{ - 5}}{2};2} ight) \in \left( {d'} ight)

    (d) // (d’) nên khoảng cách giữa (d) và (d’) chính là d(A, (d)).

    Do đó d(A, (D)) = 2

    ⇔ |c + 1| = 20

    ⇔ c + 1 = 20 hoặc c + 1 = –20

    ⇔ c = 19 (nhận vì 19 ≠ –1) hoặc c = –21 (nhận vì –21 ≠ –1).

    Vậy có hai đường thẳng (d) thỏa mãn yêu cầu bài toán có phương trình là:

    6x + 8y + 19 = 06x + 8y – 21 = 0.

  • Câu 7: Thông hiểu
    Tìm tọa độ điểm A

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Hướng dẫn:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 8: Nhận biết
    Điền vào chỗ trống

    Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.

    Hướng dẫn:

    Vectơ \overrightarrow u có giá song song hoặc trùng với đường thẳng thì \overrightarrow u được gọi là vectơ chỉ phương của đường thẳng đó.

  • Câu 9: Nhận biết
    Xác định phương trình đường thẳng

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Hướng dẫn:

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 10: Nhận biết
    Một phương trình đường thẳng có bao nhiêu vectơ pháp tuyến

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

    Hướng dẫn:

     Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 142 lượt xem
Sắp xếp theo