Luyện tập Tích vô hướng của hai vectơ

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm biểu thức sai

    Cho M là trung điểm AB, tìm biểu thức sai:

    Hướng dẫn:

    Ta có: M là trung điểm của AB

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {MA = BM} \\   {\overrightarrow {MA}  earrow  \swarrow \overrightarrow {MB} } \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {MA}  = \overrightarrow {BM} } \\   {\left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) = {{180}^0}} \end{array}} ight. \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  = \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {MB} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  = \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {MB} } ight|\cos \left( {{{180}^0}} ight) \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  =  - MA.MB \hfill \\ \end{matrix}

    Vậy biểu thức sai là: \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB

  • Câu 2: Vận dụng
    Tính góc giữa hai vectơ

    Cho hình chữ nhật ABCD có AB = \sqrt{2}, AD = 1. Tính góc giữa hai vectơ \overrightarrow{AC}\overrightarrow{BD}

    Hướng dẫn:

    Ta có: 

    ABCD là hình chữ nhật

    \begin{matrix}   \Rightarrow AC = BD = \sqrt 3  \hfill \\   \Rightarrow OB = OC = \dfrac{{\sqrt 3 }}{2} \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AC}  = 2\overrightarrow {OC} } \\   {\overrightarrow {BD}  = 2\overrightarrow {OD} } \end{array}} ight. \Rightarrow \left( {\overrightarrow {AC} ,\overrightarrow {BD} } ight) = \left( {\overrightarrow {OC} ,\overrightarrow {OD} } ight) = \widehat {DOC}

    Xét tam giác ODC ta có:

    \begin{matrix}  \cos \widehat {DOC} = \dfrac{{O{D^2} + O{C^2} - {{\left( {DC} ight)}^2}}}{{2OD.OC}} \hfill \\   \Rightarrow \cos \widehat {DOC} = \dfrac{{{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} - 2}}{{2{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2}}} =  - \dfrac{1}{3} \hfill \\   \Rightarrow \widehat {DOC} \approx {109^0} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu
    Tính tích vô hướng của hai vectơ

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}

    Hướng dẫn:

    Ta có: Tam giác ABC đều => \left\{ {\begin{array}{*{20}{c}}  {\left( {\overrightarrow {AB} ,\overrightarrow {AC} } ight) = {{60}^0}} \\   {\left| {\overrightarrow {AB} } ight| = \left| {\overrightarrow {AC} } ight| = a} \end{array}} ight.

    \begin{matrix}   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = a.a.\cos \left( {{{60}^0}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \frac{1}{2}{a^2} \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức P

    Cho tam giác ABC có BC = a, CA = b, AB = c. Tính P=(\overrightarrow{AB}+\overrightarrow{AC})\times \overrightarrow{BC}

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\overrightarrow {BC}  \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {BA}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( { - \overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = {\left( {\overrightarrow {AC} } ight)^2} - {\left( {\overrightarrow {AB} } ight)^2} = {\left| {\overrightarrow {AC} } ight|^2} - {\left| {\overrightarrow {AB} } ight|^2} \hfill \\   \Rightarrow P = {b^2} - {c^2} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

    Hướng dẫn:

     Ta có:

    \begin{matrix}  \vec a.\vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

    => \overrightarrow{a}\overrightarrow{b} ngược hướng.

  • Câu 6: Vận dụng
    Tìm tập hợp điểm M

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}.(\overrightarrow{MB}+\overrightarrow{MC})=0 là:

    Hướng dẫn:

    Ta có: \overrightarrow {MB}  + \overrightarrow {MC}  = 2\overrightarrow {MI} (I là trung điểm của BC)

    \begin{matrix}  \overrightarrow {MA} .\left( {\overrightarrow {MB}  + \overrightarrow {MC} } ight) = 0 \hfill \\   \Leftrightarrow \overrightarrow {MA} .\left( {2\overrightarrow {MI} } ight) = 0 \hfill \\   \Leftrightarrow 2\overrightarrow {MA} .\overrightarrow {MI}  = 0 \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MI}  = 0 \hfill \\   \Rightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {MI} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {MI}  \hfill \\ \end{matrix}

    \Rightarrow \widehat {AMI} = {90^0}

    => Qũy tích điểm M là đường tròn đường kính IA.

  • Câu 7: Vận dụng
    Tích tích vô hướng của hai vectơ

    Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính \overrightarrow{AB}\times \overrightarrow{BD}.

    Hướng dẫn:

    Do ABCD là hình chữ nhật => \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight) = {180^0} - \widehat {ABD}

    Xét tam giác ABD vuông tại A ta có:

    \begin{matrix}  DB = \sqrt {A{B^2} + A{D^2}}  = \sqrt {89}  \hfill \\   \Rightarrow \cos \widehat {ABD} = \dfrac{{AB}}{{BD}} = \dfrac{8}{{\sqrt {89} }} \hfill \\ \end{matrix}

    Ta lại có: 

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {BD}  = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {BD} } ight|. - \cos \left( {\widehat {ABD}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {BD}  = 8.\sqrt {89} .\left( {\dfrac{{ - 8}}{{\sqrt {89} }}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {BD}  =  - 64 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết
    Tìm hệ thức sai

    Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?

    Hướng dẫn:

    Hệ thức sai là: \overrightarrow{MP}\times \overrightarrow{MN}=-\overrightarrow{MN}\times \overrightarrow{MP}

    \overrightarrow {MP} .\overrightarrow {MN}  = \overrightarrow {MN} .\overrightarrow {MP} (tính chất giao hoán)

  • Câu 9: Thông hiểu
    Tìm quỹ tích điểm M

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 10: Nhận biết
    Tính góc giữa hai vectơ

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 15 lượt xem
Sắp xếp theo