Trắc nghiệm Toán 10 Chương 3 Bài 1: Hàm số và đồ thị

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm tập xác định

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Hướng dẫn:

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 2: Thông hiểu
    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{x+2}-\sqrt{x+3}.

    Hướng dẫn:

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{x \ge  - 2}\\{x \ge  - 3}\end{array} \Leftrightarrow x \ge  - 2} ight..

    Vậy D=[-2;+\infty).

  • Câu 3: Nhận biết
    Tìm tập xác định

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

    Hướng dẫn:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 4: Nhận biết
    Tìm điểm thuộc đồ thị hàm số

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

    Hướng dẫn:

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 5: Nhận biết
    Tìm điều kiện của m thỏa mãn

    Tìm tất cả các giá trị của m để hàm số y = f(x) = (2-m)x+x + 2 nghịch biến trên \mathbb{R}.

    Hướng dẫn:

     Điều kiện để hàm số y=ax+b nghịch biến trên \mathbb {R}a<0.

    Suy ra 2-m<0 \Leftrightarrow m>2.

  • Câu 6: Nhận biết
    Tìm tập xác định

    Tìm tập xác định của y = \sqrt{6-3x}-\sqrt{x-1}

    Hướng dẫn:

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{6 - 3x \ge 0}\\{x - 1 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 2}\\{x \ge 1}\end{array}} ight.} ight. \Leftrightarrow 1 \le x \le 2.

    Vậy D=[1;2].

  • Câu 7: Nhận biết
    Tìm điều kiện của m thỏa mãn

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Hướng dẫn:

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

  • Câu 8: Thông hiểu
    Tính giá trị của hàm số tại điểm

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

    Hướng dẫn:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 9: Thông hiểu
    Tìm tập xác định

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

    Hướng dẫn:

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 10: Nhận biết
    Tìm điểm không thuộc đồ thị hàm số

    Điểm nào không thuộc đồ thị hàm số đồ thị y = f(x) = 5x - 1?

    Hướng dẫn:

     Thay tọa độ (1;2) vào hàm số ta được: 2 eq4. Do đó điểm này không thuộc đồ thị hàm số.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 14 lượt xem
Sắp xếp theo