Trắc nghiệm Toán 10 Chương 3 Bài 4: Bất phương trình bậc hai một ẩn

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm tập nghiệm của bất phương trình

    Tập nghiệm của bất \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 là:

    Hướng dẫn:

     Ta có: \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 \Leftrightarrow \frac{\sqrt2}2 < x <1.

    Vậy D=(\frac{\sqrt{2}}{2};1)

  • Câu 2: Nhận biết
    Tìm tập nghiệm của bất phương trình

    Tập nghiệm của bất phương trình: 2x^{2}–7x–15≥0 là:

    Hướng dẫn:

     Ta có: 2x^{2}–7x–15≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le  - \frac{3}{2}}\\{x \ge 5}\end{array}} ight..

    Vậy D=(-\infty ;-\frac{3}{2}]\cup [5;+\infty ).

  • Câu 3: Nhận biết
    Giải bất phương trình

    Giải bất phương trình −2x^{2}+3x−7≥0.

    Hướng dẫn:

     Ta có: −2x^{2}+3x−7≥0 \Leftrightarrow x \in \varnothing.

  • Câu 4: Nhận biết
    Tìm tập nghiệm của bất phương trình

    Bất phương trình (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−5 có tập nghiệm là:

    Hướng dẫn:

     Ta có: (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−52x^2+2x-2 \le2x^2+2x-8 \Leftrightarrow -2 \le -8 (vô lí).

    Vậy S = \varnothing.

  • Câu 5: Nhận biết
    Giải bất phương trình

    Giải bất phương trình x(x+5)≤2(x^{2}+2)

    Hướng dẫn:

     Ta có: x(x+5)≤2(x^{2}+2)  \Leftrightarrow -x^2+5x-4 \le 0\Leftrightarrow x\in (-∞;1]\cup [4;+∞).

  • Câu 6: Nhận biết
    Tìm tập nghiệm của bất phương trình

    Tập nghiệm của bất phương trình 6x^{2}+x−1≤0

    Hướng dẫn:

     Ta có: 6x^{2}+x−1≤0  \Leftrightarrowx \in [-\frac{1}{2};\frac{1}{3}].

  • Câu 7: Thông hiểu
    Tìm tập nghiệm của bất phương trình

    Tập nghiệm S của bất phương trình 5(x+1)−x(7−x)>−2x là:

    Hướng dẫn:

     Ta có: 5(x+1)−x(7−x)>−2x \Leftrightarrow x^2+5>0 (hiển nhiên).

    Vậy S = \mathbb{R}.

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Cho bất phương trình x^{2}−8x+7≥0 . Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

    Hướng dẫn:

     Ta có: x^{2}−8x+7≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le 1}\\{x \ge 7}\end{array}} ight.. Suy ra S=[-\infty;1) \cup [7;+\infty).

    Nhận xét: [6;+\infty) không thuộc S.

  • Câu 9: Thông hiểu
    Tìm bất phương trình tương đương

    Cặp bất phương trình nào sau đây là tương đương?

    Hướng dẫn:

    Ta có: x-2 \le 0 \Leftrightarrow x \le2.

    Ta có: x^{2}(x-2)\leq 0 \Leftrightarrow x-2 \le0 (Vì x^2\ge0 với mọi giá trị x). Do đó x \le 2.

  • Câu 10: Nhận biết
    Tìm tập nghiệm của bất phương trình

    Tập nghiệm S của bất phương trình x^{2} + x - 12 < 0 là:

    Hướng dẫn:

     Ta có: x^{2} + x - 12 < 0  \Leftrightarrow -4< x <3.

    Suy ra S = (-4;3).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 11 lượt xem
Sắp xếp theo