Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Cho số gần đúng a = 23748023 với độ chính xác d = 101. Hãy viết số quy tròn của số a.
Vì độ chính xác d = 101 là hàng trăm nên ta quy tròn đến hàng nghìn, ta được số:
a = 23748023.
Đo độ cao một ngọn cây là h = 347,13m ± 0,2m. Hãy viết số quy tròn của số gần đúng 347,13.
Vì độ chính xác d = 0,2 nên ta quy tròn đến hàng đơn vị, ta được số: 347.
Một miếng đất hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Tính chu vi P của miếng đất đã cho.
Giả sử x = 43 + a, y = 63 + b.
Chu vi miếng đất: P = 2x + 2y = 212 + 2(a + b).
Theo giả thiết -0,5 ≤ a ≤ 0,5 và -0,5 ≤ b ≤ 0,5 nên -2 ≤ 2(a +b) ≤ 2.
Do đó P = 212m ± 2m.
Trong các thí nghiệm hằng số C được xác định là 5,73675 với cận trên sai số tuyệt đối là d = 0,00421. Viết chuẩn giá trị gần đúng của C là:
Vì độ chính xác d = 0,00421 (hàng phần trăm nghìn) nên ta quy tròn số gần đúng đến hàng phần chục nghìn. Ta được: 5,7368.
Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:
Quy tròn 14869 đến hàng trăm, ta được: 14900.
Số 2,457 là số quy tròn của 2,4571 với sai số tuyệt đối là:
Sai số tuyệt đối: .
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: . Giá trị gần đúng của chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được: .
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Một thửa ruộng hình chữ nhật có chiều dài là x = 23m ± 0,01m và chiều rộng là y = 15m ± 0,01m. Tính diện tích S của thửa ruộng đã cho.
Diện tích của thửa ruộng là: .