Trắc nghiệm Toán 10 Chương 7 Bài 5: Phương trình đường tròn

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):(x-1)^{2}+(y+3)^{2}=25 là:

    Hướng dẫn:

     Tâm I(1;-3), bán kính R=5.

  • Câu 2: Nhận biết
    Tìm điều kiện chính xác

    Cho phương trình x^{2} + y^{2} – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn là

    Hướng dẫn:

     Điều kiện: a^{2} + b^{2} > c.

  • Câu 3: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:

    Hướng dẫn:

     Ta có: R = IM = \sqrt {{{(2 + 2)}^2} + {{( - 3 - 3)}^2}}  = 2\sqrt {13}.

    Phương trình đường tròn: {(x + 2)^2} + {(y - 3)^2} = 52 \Leftrightarrowx^{2}+y^{2}+4x-6y-39=0.

  • Câu 4: Nhận biết
    Tìm độ dài đường kính

    Cho đường tròn (C):x^{2}+y^{2}+4x+4y-17=0 , hỏi độ dài đường kính bằng bao nhiêu?

    Hướng dẫn:

     Ta có tâm I( - 2; - 2). Suy ra bán kính R = \sqrt {{{( - 2)}^2} + {{( - 2)}^2} + 17}  = 5.

    Do đó đường kính bằng 10.

  • Câu 5: Nhận biết
    Viết phương trình tiếp tuyến

    Viết phương trình tiếp tuyến của đường tròn (C):(x – 2)^{2} + (y + 3)^{2} = 5 tại điểm M(3;-1).

    Hướng dẫn:

     Tâm I(2;-3).

    Phương trình tiếp tuyến tại M(3;-1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) = 0 \Leftrightarrow x + 2y - 1 = 0.

  • Câu 6: Nhận biết
    Tìm tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: (x – 1)^{2} + (y – 10)^{2} = 81 lần lượt là:

    Hướng dẫn:

     Tâm I(1;10), bán kính R=9.

  • Câu 7: Nhận biết
    Tìm phương trình tương đương

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

    Hướng dẫn:

     Ta có: (x + 5)^{2} + (y – 2)^{2} = 25  \Leftrightarrow x^{2} + y^{2} + 10x – 4y + 4 = 0.

  • Câu 8: Nhận biết
    Tìm tâm và bán kính

    Đường tròn (C): x^{2} + y^{2} – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

    Hướng dẫn:

     Ta có: I(4;-1) ,R=\sqrt{11}.

  • Câu 9: Nhận biết
    Tìm phương trình tiếp tuyến

    Phương trình tiếp tuyến d của đường tròn (C): (x + 2)^{2} + (y + 2)^{2} = 9 tại điểm M(2; 1) là:

    Hướng dẫn:

     Tâm I(-2;-2).

    Phương trình tiếp tuyến tại điểm M(2; 1) là:

    ( - 2 - 2)(x - 2) + ( - 2 - 1)(y - 1) = 0 \Leftrightarrow 4x + 3y - 11 = 0.

     

  • Câu 10: Nhận biết
    Tính độ dài đường kính

    Đường tròn (C): x^{2} + y^{2} – 3x – y = 0 có đường kính bằng bao nhiêu?

    Hướng dẫn:

     Tâm I(\frac32;\frac12). Do đó R = \sqrt {{{\left( {\frac{3}{2}} ight)}^2} + {{\left( {\frac{1}{2}} ight)}^2} - 0}  = \frac{{\sqrt {10} }}{2}.

    Do đó đường kính bằng 2R=\sqrt{10}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (90%):
    2/3
  • Thông hiểu (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 10 lượt xem
Sắp xếp theo