Trắc nghiệm Toán 10 Chương 3 Bài 3: Dấu của tam thức bậc hai

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tam thức bậc hai nhận giá trị dương khi nào

    Tam thức bậc hai f(x)=x^{2}+(\sqrt{5}-1)x-\sqrt{5} nhận giá trị dương khi và chỉ khi:

    Hướng dẫn:

     Ta có: \Delta >0a=1>0.

     Phương trình f(x)=0 có hai nghiệm phân biệt x=-\sqrt5 ;x=1.

    Do đó f(x)>0 khi x∈(−∞;-\sqrt{5})∪(1;+∞).

  • Câu 2: Nhận biết
    Tìm điều kiện chính xác

    Cho f(x)=ax^{2}+bx+c(a≠0). Điều kiện để f(x)>0 \forall x \in \mathbb{R} là:

    Hướng dẫn:

     Ta có: f(x)=ax^{2}+bx+c>0 \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{matrix}a>0\\ \Delta < 0\end{matrix}ight..

  • Câu 3: Thông hiểu
    Tam thức bậc hai không âm khi nào

    Tam thức bậc hai f(x)=−x^{2}+3x−2 nhận giá trị không âm khi và chỉ khi

    Hướng dẫn:

     Ta có: \Delta >0a=-1<0.

    Phương trình f(x)=0 có hai nghiệm phân biệt là x=1;x=2.

    Do đó, f(x) \ge 0 x \in [1;2].

  • Câu 4: Thông hiểu
    Chọn kết luận đúng

    Tam thức bậc hai f(x)=(1-\sqrt{2})x^{2}+(5-4\sqrt{2})x-3\sqrt{2}+6

    Hướng dẫn:

     Ta có: \Delta >0a=1-\sqrt2 <0.

    Phương trình f(x)=0 có hai nghiệm là x=-3x=\sqrt2.

    Do đó f(x)>0 \forall x ∈(-3;\sqrt{2}).

  • Câu 5: Thông hiểu
    Tam thức bậc hai dương khi nào

    Tam thức bậc hai f(x)=−x^{2}+5x−6 nhận giá trị dương khi và chỉ khi

    Hướng dẫn:

     Ta có: \Delta >0a=-1<0.

    Phươn trình f(x)=0 có hai nghiệm phân biệt x=2;x=3.

    Do đó f(x)>0 \Leftrightarrow x \in (2;3).

  • Câu 6: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Các giá trị m để tam thức f(x)=x^{2}-(m+2)x+8m+1 đổi dấu 2 lần là:

    Hướng dẫn:

     Để f(x) đổi dấu 2 lần thì \Delta >0.

    Ta có: (m+2)^2-4 (8m+1)>0 \Leftrightarrow m^2-28m>0 \Leftrightarrow m<0 hoặc m>28.

     

  • Câu 7: Thông hiểu
    Tìm số giá trị nguyên của x

    Số giá trị nguyên của x để tam thức f(x)=2x^{2}−7x−9 nhận giá trị âm là:

    Hướng dẫn:

     Ta có: \Delta >0a=2>0.

    Phương trình f(x)=0 có hai nghiệm x=-1;x=\frac92.

    Do đó f(x)<0 \Leftrightarrow  -1 < x < \frac92 \Leftrightarrow x=\{0;1;2;3;4\} (5 giá trị).

  • Câu 8: Vận dụng
    Tìm điều kiện của m sao cho

    Tìm tất cả các giá trị của tham số m sao cho tam thức bậc hai f(x)=(m-1)x^{2}+(3m-2)x+3-2m đổi dấu hai lần trên \mathbb{R}?

    Hướng dẫn:

    Để biểu thức trên là tam thức bậc hai thì m eq 1.

    Để tam thức bậc hai đổi dấu 2 lần trên \mathbb{R} thì \Delta >0.

    Ta có: (3m-2)^2-4 (m-1)(3-2m)>0 \Leftrightarrow17m^2-32m+16>0. Suy ra m \in \mathbb{R}.

    Kết hợp điều kiện ở trên, suy ra m eq 1.

     

  • Câu 9: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

    Hướng dẫn:

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 10: Thông hiểu
    Tìm mệnh đề đúng.

    Cho f(x)=ax^{2}+bx+c(a≠0)Δ=b^{2}−4ac<0. Khi đó mệnh đề nào đúng?

    Hướng dẫn:

     Khi \Delta<0 thì f(x) luôn cùng dấu với hệ số a \text{       } \forall x\in \mathbb{R}. Do đó nó không đổi dấu.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (80%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 20 lượt xem
Sắp xếp theo