Trắc nghiệm Toán 10 Chương 4 Bài 6: Tích vô hướng của hai vectơ

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Chọn khẳng định đúng

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

    Hướng dẫn:

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 2: Nhận biết
    Tính tích vô hướng

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

    Hướng dẫn:

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 3: Thông hiểu
    Tìm tập hợp điểm M

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Hướng dẫn:

     Vì \overrightarrow {MA} .\overrightarrow {BC}  = 0, mà A,B,C cố định nên suy ra tập hợp M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 4: Thông hiểu
    Chọn điều kiện đúng

    Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng (\overrightarrow{OA}+\overrightarrow{OB})\overrightarrow{AB}=0 là:

    Hướng dẫn:

     Chọn đáp án: Tam giác OAB cân tại O.

    Gọi M là trung điểm AB.

    Ta có: \left( {\overrightarrow {OA}  + \overrightarrow {OB} } ight).\overrightarrow {AB}  = 2\overrightarrow {OM} .\overrightarrow {AB}  = 0 (do OM\perp AB).

  • Câu 5: Nhận biết
    Tính góc giữa hai đường thẳng

    Cho tam giác đều ABC có đường cao AH. Tính (\overrightarrow{AH},\overrightarrow{BA}).

    Hướng dẫn:

     Lấy D sao cho \overrightarrow {BD}=\overrightarrow {AH}.

    Ta có: (\overrightarrow{AH},\overrightarrow{BA}) =(\overrightarrow{BD},\overrightarrow{BA})=90^{\circ} +60^{\circ}= 150^{\circ}.

  • Câu 6: Nhận biết
    Tìm đẳng thức sai

    Cho M là trung điểm AB, tìm đẳng thức sai

    Hướng dẫn:

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

  • Câu 7: Nhận biết
    Tính cosin góc giữa 2 vectơ

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

    Hướng dẫn:

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 8: Nhận biết
    Tính tích vô hướng

    Cho hình thoi ABCDAC = 8, BD = 5. Tính \overrightarrow{AC}\times \overrightarrow{BD}.

    Hướng dẫn:

     

    AC\perp BD nên \overrightarrow {AC} .\overrightarrow {BD}  = 0.

  • Câu 9: Nhận biết
    Câu 9

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn |\overrightarrow{a}|=3 , |\overrightarrow{b}|=2\overrightarrow{a}\overrightarrow{b}=-3. Xác định góc α giữa hai vectơ \overrightarrow{a}\overrightarrow{b}

  • Câu 10: Nhận biết
    Câu 10

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}(\overrightarrow{MB}+\overrightarrow{MC})=0 là:

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 10 lượt xem
Sắp xếp theo