Trắc nghiệm Toán 10 Chương 4 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tính bán kính R

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

    Hướng dẫn:

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 2: Thông hiểu
    Tính độ dài cạnh BC.

    Tam giác ABC có AB=\sqrt{2},AC=\sqrt{3}\widehat{C}=45°. Tính độ dài cạnh BC.

    Hướng dẫn:

     Áp dụng định lý côsin: A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 45^\circ\Leftrightarrow 2 = 3 + C{B^2} - 2\sqrt 3 .CB.\frac{{\sqrt 2 }}{2}\Leftrightarrow C{B^2} - \sqrt 6 CB + 1 = 0\Rightarrow BC=\frac{{\sqrt 6  + \sqrt 2 }}{2}.

     

  • Câu 3: Vận dụng
    Tính độ dài cạnh BC

    Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh

    AB = 9 và \widehat{ACB}=60°. Tính độ dài cạnh cạnh BC.

    Hướng dẫn:

     Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra AC=6.

    Áp dụng định lí côsin:

    A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 60^\circ

    \Leftrightarrow 9^2 = 6^2 + C{B^2} - 2.6 .CB.\frac1{2}

    \Leftrightarrow C{B^2} -  6 CB -45 = 0 \Rightarrow BC = 3 + 3\sqrt 6.

  • Câu 4: Nhận biết
    Tính độ dài BC

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

    Hướng dẫn:

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 5: Nhận biết
    Tính số đo góc A

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

    Hướng dẫn:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 6: Thông hiểu
    Tính độ dài AC

    Tam giác ABC\widehat{B}=60°,\widehat{C}=45°AB=5. Tính độ dài cạnh AC.

    Hướng dẫn:

     Áp dụng định lí sin: 

    \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow AC = \sin B.\frac{{AB}}{{\sin C}}= \sin 60^\circ .\frac{5}{{\sin 45^\circ }} = \frac{{5\sqrt 6 }}{2}.

  • Câu 7: Nhận biết
    Tính độ dài cạnh b

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

    Hướng dẫn:

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 8: Nhận biết
    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

    Hướng dẫn:

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 9: Nhận biết
    Tính giá trị cotang của góc

    Giá trị cot\frac{\pi }{6} là:

    Hướng dẫn:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 10: Nhận biết
    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

    Hướng dẫn:

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 25 lượt xem
Sắp xếp theo