Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:
Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là
Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).
Vậy .
Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:
Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là
Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).
Vậy .
Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.
Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}
Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt xúc xắc chia hết cho 3 là.
Gieo 2 con xúc sắc, số kết quả của không gian mẫu là: .
Các kết quả thỏa mãn yêu cầu đề bài là: (1; 2); (1; 5); (2; 1); (2; 4); (3; 3); (3; 6); (4; 2); (4; 5); (5; 1); (5; 4); (6; 3); (6; 6). Có 12 phần tử.
Xác suất là: .
Gieo một con xúc xắc. Gọi K là biến cố số chấm xuất hiện trên con xúc xắc là một số nguyên tố. Hãy xác định biến cố K.
Ta có: K = {2; 3; 5}.
Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Xác suất để sau hai lần gieo được số chấm giống nhau.
Gieo 2 con xúc xắc, số phần tử của không gian mẫu: .
Các kết quả thỏa mãn là: (1,1); (2,2); (3,3); (4,4); (5,5); (6,6). Có 6 kết quả.
Vậy xác suất là: .
Gieo xúc xắc hai lần. Tính xác suất để tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
Gieo một con xúc xắc 2 lần. Suy ra .
Các kết quả thỏa mãn yêu cầu đề bài là: (1; 1), (1; 2), (2; 1),(1; 4), (4; 1), (2;3), (3;2). 7 kết quả.
Vậy xác suất .
Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.
Ta có: Ω = {SS; SN; NS; NN}.
Xác suất của biến cố A, kí hiệu là:
Xác suất của biến cố A, kí hiệu là: P(A).
Cho không gian mẫu Ω có n(Ω) = 10. Biến cố A có số các kết quả thuận lợi là n(A) = 5. Xác suất của biến cố A là:
Ta có: .
Tung một đồng xu hai lần liên tiếp. Không gian mẫu trong trò chơi trên là:
Ta có: Ω = {SS; SN; NS; NN}