Đề thi giữa kì 1 Toán 11 sách Kết nối tri thức

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 50 câu
  • Điểm số bài kiểm tra: 50 điểm
  • Thời gian làm bài: 90 phút
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
90:00
  • Câu 1: Nhận biết
    Tính giá trị đại diện nhóm số liệu

    Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:

    Thời gian (phút)

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    Số học sinh

    8

    16

    4

    2

    2

    Giá trị đại diện nhóm [20; 25) bằng bao nhiêu?

    Hướng dẫn:

    Giá trị đại diện nhóm [20; 25) là: \frac{20 + 25}{2} = 22,5

  • Câu 2: Vận dụng cao
    Tính tổng 10 số hạng dầu tiên

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Hướng dẫn:

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 3: Vận dụng cao
    Tìm m để nghiệm phương trình lập thành CSN

    Cho phương trình bậc ba: {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 (m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 \hfill \\   \Leftrightarrow \left( {x - m} ight)\left( {{x^2} + 5x + 6} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = m} \\   {x =  - 2} \\   {x =  - 3} \end{array}} ight. \hfill \\ \end{matrix}

    Để ba nghiệm của phương trình lập thành một cấp số nhân

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left( { - 2} ight).\left( { - 3} ight) = {m^2}} \\   { - 3m = {{\left( { - 2} ight)}^2}} \\   { - 2m = {{\left( { - 3} ight)}^2}} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  \pm \sqrt 6 } \\   {m =  - \dfrac{4}{3}} \\   {m =  - \dfrac{9}{2}} \end{array}} ight.

     

  • Câu 4: Thông hiểu
    Tìm số hạng thứ n của cấp số cộng

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Gợi ý:

     Sử dụng công thức: {u_{n + 1}} = {u_n} + d

    Hướng dẫn:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 5: Thông hiểu
    Tính giá trị biểu thức

    Phương trình sinx = \frac{\sqrt{3}}{2} có hai họ nghiệm có dạng x = \alpha + k\pix = \beta + k\pi, k \in \mathbb{Z}(0 < \alpha < \beta <
\pi). Khi đó, tính \beta -
\alpha ?

    Hướng dẫn:

    Ta có \ sinx = \dfrac{\sqrt{3}}{2}\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{3} + k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix}\ (k \in \mathbb{Z}) ight..

    \Rightarrow \beta = \frac{2\pi}{3},\alpha
= \frac{\pi}{3} \Rightarrow \beta - \alpha = \frac{\pi}{3}.

  • Câu 6: Nhận biết
    Chọn khẳng định đúng

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi M,N,P,Q lần lượt là trung điểm của BC,CD,SB,SD. Chọn khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có MN là đường trung bình tam giác BDC \Rightarrow MN//BD (1)

    Ta có PQ là đường trung bình của tam giác SBD \Rightarrow
PQ//BD(2).

    \Rightarrow MN//PQ.

  • Câu 7: Nhận biết
    Tìm công bội q của CSN

    Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.

    Gợi ý:

    Sử dụng công thức {u_n} = {u_1}.{q^{n - 1}}

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Rightarrow {u_4} = {u_1}.{q^{4 - 1}} \hfill \\   \Rightarrow 64 = 1.{q^3} \hfill \\   \Rightarrow {q^3} = 64 \Rightarrow q = 4 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết
    Tính cường độ dòng điện

    Cường độ dòng điện trong một đoạn mạch là i = \sqrt{2}sin(100\pi t + \alpha) (A). Tại thời điểm t =
\frac{1}{100}s thì cường độ trong mạch có giá trị bằng.

    Hướng dẫn:

    Thay t = \frac{1}{100}s vào biểu thức cường độ dòng điện ta được:

    i = \sqrt{2}sin\left( 100\pi \cdot
\frac{1}{100} + \alpha ight) = \sqrt{2}sin(\pi + \alpha) = -
\sqrt{2}sin(\alpha)(A).

  • Câu 9: Nhận biết
    Dãy nào là cấp số nhân

    Trong các dãy số sau, dãy số nào là một cấp số nhân?

    Hướng dẫn:

    Ta có:

    Dãy số \left( u_{n} ight) là cấp số nhân

    \Leftrightarrow u_{n} = q.u_{n -
1};\left( n \in \mathbb{N}^{*} ight)

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}} = ... = q;\left( u_{n} eq 0
ight)

    Gọi q là công bội.

    Xét đáp án 128; - 64;32; -
16;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} = -
\frac{1}{2} = \frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}}

    Xét đáp án \sqrt{2};2;4;4\sqrt{2};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\sqrt{2}} eq 2 = \frac{u_{3}}{u_{2}}

    Xét đáp án 5;6;7;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{6}{5} eq \frac{7}{6} = \frac{u_{3}}{u_{2}}

    Xét đáp án 15;5;1;\frac{1}{5};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{3} eq \frac{1}{5} = \frac{u_{3}}{u_{2}}

  • Câu 10: Thông hiểu
    Tính giá trị biểu thức

    Cho \sin x +cosx = \frac{1}{2}. Tính giá trị biểu thức A = \frac{1 + sin2x}{1 - sin2x}

    Hướng dẫn:

    Do \sin x + cosx = \frac{1}{2} nên bình phương hai vế ta được:

    1 + 2sinx\cos x = \frac{1}{4} \Rightarrowsin2x = - \frac{3}{4}

    Vậy A = \frac{1 + sin2x}{1 - sin2x} =\frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}

  • Câu 11: Nhận biết
    Tìm nhóm chứa tứ phân vị thứ ba

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Giá trị tứ phân vị thứ ba thuộc nhóm số liệu nào?

    Hướng dẫn:

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Hướng dẫn:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -33}{5}.5 \approx 66,5

  • Câu 13: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ giác ABCD và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với SC.Gọi N là giao điểm của đường thẳng SD với mặt phẳng (ABM). Khi đó AN là giao tuyến của hai mặt phẳng nào sau đây?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có B \in (ABM) \cap (SBD) (1)

    Gọi O = AC \cap BD,K = AM \cap SO.

    Khi đó: \left\{ \begin{matrix}
K \in AM \subset (ABM) \\
K \in SO \subset (SBD) \\
\end{matrix} \Rightarrow K \in (ABM) \cap (SBD) ight.

    Từ (1) và (2) suy ra (ABM) \cap (SBD) = BK

    Trong mặt phẳng (SBD). Gọi N = BK \cap SD.

    Khi đó: \left\{ \begin{matrix}N \in SD \\N \in BK \subset (ABM) \\\end{matrix} \Rightarrow N = (ABM) \cap SDight.

    Dễ thấy AN = (ABM) \cap(SAD)

  • Câu 14: Vận dụng
    Chu kì của hàm số lượng giác

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Hướng dẫn:

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 15: Thông hiểu
    Tìm đáp án chính xác

    Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:

    7,8

    7,7

    7,5

    7,8

    7,7

    7,6

    8,7

    7,6

    7,5

    7,5

    7,3

    7,1

    8,1

    8,4

    7,0

    7,1

    7,2

    7,3

    7,4

    8,5

    8,3

    7,2

    7,1

    7,0

    6,7

    6,6

    8,6

    8,2

    6,9

    6,8

    6,5

    6,2

    6,3

      

    Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?

    Hướng dẫn:

    Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:

    Thời gian (giây)

    Tần suất (%)

    [6,0; 6,5)

    6,06

    [6,5; 7,0)

    15,15

    [7,0; 7,5)

    30,3

    [7,5; 8,0)

    27,27

    [8,0; 8,5)

    12,12

    [8,5; 9)

    9,1

    Tổng

    100%

    Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:

    30,3\% + 27,27\% + 12,12\% =69,69\%

  • Câu 16: Thông hiểu
    Biến đổi biểu thức

    Đơn giản biểu thức A = cos\left( \alpha - \frac{\pi}{2} ight) +
sin(\alpha + \pi), ta có

    Hướng dẫn:

    Ta có:

    A = cos\left( \alpha - \frac{\pi}{2}
ight) + sin(\alpha + \pi)

    = cos\left( \frac{\pi}{2} - \alpha
ight) - sin\alpha = sin\alpha - sin\alpha = 0

  • Câu 17: Vận dụng
    Hàm số nào là hàm số lẻ?

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Hướng dẫn:

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Cho công thức y
= 3sin\left( \frac{\pi}{180}(x + 60) ight) + 13 biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với 1 \leq x \leq 365 là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.

    Hướng dẫn:

    Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số y = 3sin\left( \frac{\pi}{180}(x + 60) ight) +
13 đạt giá trị lớn nhất.

    Khi đó sin\left( \frac{\pi}{180}(x + 60)
ight) = 1 \Leftrightarrow x = 30 + k360,k \in Z.

    1 \leq x \leq 365 nên ta có 1 \leq 30 + k360 \leq 365 \Leftrightarrow -
0,08 \leq k \leq 0,93 \Rightarrow k = 0.

    Do đó x = 30 (tháng đầu tiên của năm)

  • Câu 19: Thông hiểu
    Tính cân nặng trung bình

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Tính cân nặng trung bình của học sinh lớp 11H?

    Hướng dẫn:

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

  • Câu 20: Thông hiểu
    Chọn khẳng định đúng

    Cho 2\pi < a
< \frac{5\pi}{2} . Chọn khẳng định đúng.

    Hướng dẫn:

    Đặt a = b + 2\pi

    2\pi < a < \frac{5\pi}{2}
\Leftrightarrow 2\pi < b + 2\pi < \frac{5\pi}{2} \Leftrightarrow 0
< b < \frac{\pi}{2}

    tana = tan(b + 2\pi) = tanb >
0

    cota = \frac{1}{tana} >
0.

    Vậy \tan a > 0,\cot a > 0.

  • Câu 21: Vận dụng
    Tính diện tích bề mặt tháp tầng trên cùng

    Người ta thiết kế một cái tháp gồm 11 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích đế tháp là 10250m^{2}, tính diện tích mặt trên cùng gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Gọi u_{0} là diện tích đế tháp và u_{n} là diện tích bề mặt trên của tầng thứ n, với 1 \leq n \leq11.

    Theo giả thiết ta có: u_{n + 1} =\frac{1}{2}u_{n};\left( n \in \lbrack 0;10brack ight)

    Dãy số \left( u_{n} ight) lập thành sấp số nhân với số hạng đầu tiên là u_{0} = 10250, công sai q = \frac{1}{2}.

    Diện tích mặt trên cùng của tháp là:

    u_{11} = u_{0}.q^{11} = 10250.\left(\frac{1}{2} ight)^{11} \approx 5m^{2}

  • Câu 22: Nhận biết
    Số 1024 là số hạng thứ mấy của CSN?

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Gợi ý:

    Sử dụng công thức {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu
    Tìm giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:

    Hướng dẫn:

    Hình vẽ minh họa

    Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là ABCD nên giao tuyến của chúng là đường thẳng đi qua S và song song với ABCD tức song song với BI.

  • Câu 24: Nhận biết
    Xác định cỡ mẫu của mẫu số liệu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Cỡ mẫu của mẫu số liệu là:

    Hướng dẫn:

    Cỡ mẫu của mẫu số liệu là:

    N = 5 + 12 + 10 + 6 + 5 + 8 = 46

  • Câu 25: Nhận biết
    Chọn đáp án đúng

    Cho các bảng số liệu sau:

    Bảng A

    Số khách hàng

    [35; 40)

    [40; 45)

    [45; 50)

    [50; 55)

    Số ngày

    5

    3

    2

    4

    Bảng B

    Điểm

    [0; 2,5)

    [2,5; 5)

    [5; 7,5)

    [7,5; 10)

    Số học sinh

    4

    6

    10

    12

    Bảng C

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Bảng D

    Số sách

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Số khách hàng

    12

    5

    7

    10

    Chọn bảng số liệu có độ dài nhóm số liệu bằng 10?

    Hướng dẫn:

    Bảng A có độ dài nhóm số liệu là: 5

    Bảng B có độ dài nhóm số liệu là: 2,5

    Bảng C có độ dài nhóm số liệu là: 30

    Bảng D có độ dài nhóm số liệu là: 10

  • Câu 26: Thông hiểu
    Chọn khẳng định sai

    Cho hình chóp S.ABCD, đáy là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm SA,SB,SCSD. Chọn khẳng định sai.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có N là điểm chung của (SBD)(MNP).

    Do M,N,P,Q lần lượt là trung điểm SA,SB,SCSD nên ta có

    \left\{ \begin{matrix}MN = \dfrac{1}{2}AB = \dfrac{1}{2}CD = PQ \\MN//AB//CD//PQ \\\end{matrix} \Rightarrow MNPQ ight. là hình bình hành.

    BD//NQ \Rightarrow
BD//(MNPQ).

    Khi đó (SBD) cắt (MNP) theo giao tuyến đi qua N và song song với BDNQ.

    Từ đó ta thấy đáp án

    NT = (SBD) \cap (MNP), với T là trung điểm MP.

    NT = (SBD) \cap (MNP), với T là trung điểm NQ.

    NT = (SBD) \cap (MNP), với T là trung điểm SD.

    Là các đáp án đúng

    T là trung điểm SB suy ra T
\equiv N \Rightarrow (SBD) \cap (MNP) = N.

  • Câu 27: Nhận biết
    Số hạng tổng quát của dãy đã cho?

    Cho dãy số có các số hạng đầu là 0;\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{4}{5};\ldots Số hạng tổng quát của dãy số này là

    Hướng dẫn:

    Ta có 0=\frac{0}{0+1};\frac{1}{2}=\frac{1}{1+1};\frac{2}{3}=\frac{2}{2+1};

    \frac{3}{4}=\frac{3}{3+1};\frac{4}{5}=\frac{4}{4+1}

    Suy ra u_{n} = \frac{n}{n + 1}

  • Câu 28: Vận dụng
    Tìm n để S thỏa mãn?

    Cho dãy số (un)u_{1} = \frac{1}{5}u_{n + 1} = \frac{n + 1}{5n}u_{n},\forall n \geq
1.

    Tất cả các giá trị n để S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} < \frac{5^{2018} -
1}{{4.5}^{2018}} là?

    Hướng dẫn:

    Ta có u_{n + 1} = \frac{n + 1}{5n}u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} = \frac{1}{5} \cdot
\frac{u_{n}}{n}

    Đặt v_{n} = \frac{u_{n}}{n},\forall n \geq
1. Suy ra (vn) là cấp số nhận có công bội q = \frac{1}{5}v = \frac{1}{5}.

    Ta có S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} = \sum_{k = 1}^{n}\mspace{2mu} v_{k} =
v_{1}\frac{1 - q^{n}}{1 - q} = \frac{1}{5} \cdot \frac{1 - \left(
\frac{1}{5} ight)^{n}}{1 - \frac{1}{5}} = \frac{1}{4} \cdot
\frac{5^{n} - 1}{5^{n}} = T_{n}

    Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.

    Suy ra T_{n} < \frac{5^{2018} -
1}{{4.5}^{2018}} = T_{2018} \Leftrightarrow n < 2018

  • Câu 29: Thông hiểu
    Chọn đáp án đúng

    Tìm tập xác định D của hàm số y = tan2x:

    Hướng dẫn:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 30: Nhận biết
    Tìm khẳng định sai

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm của SASD. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Đáp án MN//BC đúng vì MN // AD do trong tam giác SADMN là đường trung bình mà BC// AD nên MN // BC

    Đáp án ON//SB đúng vì ON là đường trung bình của tam giác SBD

    Đáp án OM//SC đúng vì OM là đường trung bình của tam giác SAC

    Đáp án ON//SC sai vì giả sử ON //SCOM //SC nên MN vô lí.

  • Câu 31: Thông hiểu
    Chọn mệnh đề đúng

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 32: Nhận biết
    Chọn đáp án đúng

    Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Hướng dẫn:

    Trong không gian có 3 vị trí tương đối giữa đường thẳng và mặt phẳng

  • Câu 33: Nhận biết
    Tìm khẳng định sai

    Khẳng định nào sau đây sai?

    Hướng dẫn:

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 34: Thông hiểu
    Tính mốt

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính mốt?

    Hướng dẫn:

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

     

    [50; 100)

    12

    f_{0}

    [100; 150)

    23

    f_{1}

    [150; 200)

    17

    f_{2}

    [200; 250)

    3

     

     

    N = 60

     

    Ta có: \left\{ \begin{matrix}l = 100,f_{0} = 12;f_{1} = 23,f_{2} = 17 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    => Mốt của dấu hiệu là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    = 100 + \frac{23 - 12}{2.23 - 12 -17}.50 \approx 132,35

  • Câu 35: Thông hiểu
    Tính tỉ số giữa hai đường thẳng

    Cho tứ diện ABCD. Gọi K,L lần lượt là trung điểm của ABBC,N là điểm thuộc đoạn CD sao cho CN
= 2ND. Gọi P là giao điểm của AD với mặt phẳng (KLN). Tính tỉ số \frac{PA}{PD}.

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử LN \cap BD = I. Nối K với I cắt AD tại P Suy ra (KLN) \cap AD = P
    Ta có: KL//AC \Rightarrow PN//AC. Suy ra \frac{PA}{PD} = \frac{NC}{ND} =
2.

  • Câu 36: Thông hiểu
    Chọn đáp án đúng

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Hướng dẫn:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

  • Câu 37: Vận dụng
    Xác định giá trị x và y

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    x

    [15; 20)

    13

    [20; 25)

    12

    [25; 30)

    y

    Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?

    Hướng dẫn:

    Ta có: N = 100 \Rightarrow x + y =36

    Lại có:

    Thời gian (phút)

    Số nhân viên

    Tần số tích lũy

    [0; 5)

    25

    25

    [5; 10)

    14

    39

    [10; 15)

    x

    39 + x

    [15; 20)

    13

    52 + x

    [20; 25)

    12

    64 + x

    [25; 30)

    y

    64 + x + y

    Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)

    Khi đó:

    \Rightarrow \left\{ \begin{matrix}l = 10;\dfrac{N}{2} = 50,m = 39,f = x \\c = 15 - 10 = 5 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\frac{\frac{N}{2} - m}{f}.c

    \Leftrightarrow 12,5 = 10 + \frac{50 -39}{x}.5 \Leftrightarrow x = 22

    \Rightarrow y = 36 - 22 =14

  • Câu 38: Nhận biết
    Chọn đáp án đúng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:

    Hướng dẫn:

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD), gọi K = BMAD

    Ta có: \left\{ \begin{gathered}
  K \in AD \hfill \\
  AD \in \left( {SAD} ight) \hfill \\ 
\end{gathered}  ight. \Rightarrow K \in \left( {SAD} ight)K \in BM nên K là giao điểm của BM với mặt phẳng (SAD).

  • Câu 39: Thông hiểu
    Giải phương trình lượng giác

    Số vị trí biểu diễn các nghiệm của phương trình \tan3x = \tan x trên đường tròn lượng giác là?

    Hướng dẫn:

    ĐK: \left\{ \begin{matrix}cos3x eq 0 \\cosx eq 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix}(*) ight.\  ight.

    Ta có tan3x = tanx \Leftrightarrow 3x = x
+ k\pi \Leftrightarrow x = \frac{k\pi}{2},k \in \mathbb{Z}.

    Kết hợp điều kiện (*) suy ra x = k\pi,k
\in \mathbb{Z} nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

  • Câu 40: Nhận biết
    Xác định giao tuyến hai mặt phẳng

    Cho hình chóp S
\cdot ABCDAC \cap BD =
MAB \cap CD = N. Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng

    Hướng dẫn:

    Hình vẽ minh họa

    Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng SM.

  • Câu 41: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của ACBC. Trên đoạn BD lấy P sao cho PB = 2PD. Khi đó giao điểm của đường thẳng CD với (MNP) là:

    Hướng dẫn:

    Hình vẽ minh họa

    Trong tam giác BCD, gọi I = NP \cap CD

    Khi đó \left\{ \begin{matrix}
I \in CD \\
I \in NP,NP \subset (MNP) \\
\end{matrix} \Rightarrow I = CD \cap (MNP) ight..

    Vậy giao điểm của đường thẳng CD với (MNP) là giao điểm của NPCD.

  • Câu 42: Vận dụng
    Tính tổng tất cả các nghiệm?

    Tính tổng T tất cả các nghiệm của phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0 trên đoạn \left[ {0;3\pi } ight].

    Gợi ý:

     Biến đổi cos 2x và đưa về dạng toán giải PT bậc 2 đối với 1 hàm số lượng giác.

    Hướng dẫn:

    Phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 2\left( {2{{\cos }^2}x - 1} ight) + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 4{\cos ^2}x + 2\cos x - 2 - \sqrt 2  = 0

    \Leftrightarrow \left[ \begin{gathered}  \cos x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(TM) \hfill \\  \cos x =  - \frac{{\sqrt 2  + 1}}{2}\,\,\,\,\,\,(L) \hfill \\ \end{gathered}  ight.\,\, \Leftrightarrow \cos x = \frac{{\sqrt 2 }}{2}

     \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{\pi }{4};x = \frac{{9\pi }}{4} \hfill \\  x =  - \,\frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{{7\pi }}{4} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}T = \frac{\pi }{4} + \frac{{9\pi }}{4} + \frac{{7\pi }}{4} = \frac{{17\pi }}{4}.

  • Câu 43: Thông hiểu
    Dãy số giảm?

    Trong các dãy số sau, dãy số nào là dãy số giảm?

    Hướng dẫn:

     

    • Xét đáp án u_{n} = \frac{n - 3}{n +
1} :

     

    Ta có u_{n} = \frac{n - 3}{n + 1};u_{n +
1} = \frac{n - 2}{n + 2}. Khi đó:

    u_{n + 1} - u_{n} = \frac{n - 2}{n + 2}
- \frac{n - 3}{n + 1} = \frac{4}{(n + 1)(n + 1)} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{n}{2}:

     

    Ta có u_{n} = \frac{n}{2};u_{n + 1} =
\frac{n + 1}{2}. Khi đó u_{n + 1} -
u_{n} = \frac{n + 1}{2} - \frac{n}{2} = \frac{1}{2} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{2}{n^{2}}:

     

    Ta có u_{n} = \frac{2}{n^{2}};u_{n + 1} =
\frac{2}{(n + 1)^{2}} \Rightarrow \frac{u_{n + 1}}{u_{n}} =
\frac{n^{2}}{(n + 1)^{2}} < \frac{n^{2}}{n^{2}} = 1,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số giảm.

     

    • Xét đáp án u_{n} = \frac{( -
1)^{n}}{3^{n}}:

     

    Ta có u_{1} = \frac{- 1}{3};u_{2} =
\frac{1}{9};u_{3} = \frac{- 1}{27}

    Vậy (un) là dãy số không tăng, không giảm.

  • Câu 44: Thông hiểu
    Tìm nghiệm phương trình

    Phương trình cos2x = 1 có một nghiệm thuộc khoảng (\pi;3\pi)

    Hướng dẫn:

    Ta có cos2x = 1 \Leftrightarrow x =
k\pi(k \in \mathbb{Z}).

    Do đó x = 2\pi là một nghiệm của phương trình cos2x = 1 thuộc khoảng (\pi;3\pi).

  • Câu 45: Thông hiểu
    Tìm giá trị của x và y

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Hướng dẫn:

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 46: Nhận biết
    Tìm mệnh đề sai

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.

  • Câu 47: Nhận biết
    Tìm mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.

    Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.

    Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.

    Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.

  • Câu 48: Vận dụng cao
    Tìm khoảng giá trị của tham số m thỏa mãn điều kiện đề bài.

    Cho hàm số y = \frac{1 - m\sin x}{\cos x+ 2}. Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?

    Hướng dẫn:

    Ta có:

    y.(cosx + 2) = 1 – m.sinx

    => m.sinx + y.cosx = 1 – 2y

    Phương trình có nghiệm khi

    \begin{matrix}m^{2} + y^{2} \geq (2y - 1)^{2} \\\Rightarrow 3y^{2} - 4y + 1 - m^{2} \leq 0 \\\end{matrix}

    Nghiệm của phương trình 3y^{2} - 4y + 1 -m^{2} = 0x = \frac{2 \pm\sqrt{3m^{2} + 1}}{3}

    => \frac{2 - \sqrt{3m^{2} + 1}}{3}\leq y \leq \frac{2 + \sqrt{3m^{2} + 1}}{3}

    => \min y = \frac{2 - \sqrt{3m^{2} +1}}{3}

    Theo yêu cầu bài toán ta có:

    \begin{matrix}  \dfrac{{2 - \sqrt {3{m^2} + 1} }}{3} <  - 2 \hfill \\   \Leftrightarrow \sqrt {3{m^2} + 1}  > 8 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > \sqrt {21} } \\   {m <  - \sqrt {21} } \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}

  • Câu 49: Thông hiểu
    Xác định thiết diện

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng (\alpha) qua O, song song với SA,CD. Thiết diện tạo bởi (\alpha) và hình chóp là hình gì?

    Hướng dẫn:

    Hình vẽ minh họa

    Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.

    Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.

    Gọi I là giao điểm của a với SD.

    Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.

    Gọi J lần lượt là giao điểm của b với SC.

    Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJGH // IJ //CD.

  • Câu 50: Thông hiểu
    Mênh đề đúng?

    Cho dãy số (un) biết u_{n} = \frac{5^{n}}{n^{2}}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có u_{n} = \frac{5^{n}}{n^{2}} >
0,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} = \frac{5^{n +
1}}{(n + 1)^{2}}

    Xét tỉ số:

    \frac{u_{n + 1}}{u_{n}} = \frac{5^{n +
1}}{(n + 1)^{2}} \cdot \frac{n^{2}}{5^{n}}

    = \frac{5n^{2}}{n^{2} + 2n + 1} =
\frac{n^{2} + 2n + 1 + 4n^{2} - 2n - 1}{n^{2} + 2n + 1}

    = 1 + \frac{2n(n - 1) + 2n^{2} -
1}{n^{2} + 2n + 1} > 1,\forall n \in \mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (34%):
    2/3
  • Thông hiểu (46%):
    2/3
  • Vận dụng (14%):
    2/3
  • Vận dụng cao (6%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 4 lượt xem
Sắp xếp theo