Cho dãy số (un) có và
.
Tất cả các giá trị n để là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Cho dãy số (un) có và
.
Tất cả các giá trị n để là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:
Hình vẽ minh họa
Trong mặt phẳng (ABCD), gọi K = BM ∩ AD
Ta có: mà
nên K là giao điểm của BM với mặt phẳng (SAD).
Cho dãy số có các số hạng đầu là Số hạng tổng quát của dãy số này là
Ta có
Suy ra
Cho các bảng số liệu sau:
Bảng A | Số khách hàng | [35; 40) | [40; 45) | [45; 50) | [50; 55) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng B | Điểm | [0; 2,5) | [2,5; 5) | [5; 7,5) | [7,5; 10) |
Số học sinh | 4 | 6 | 10 | 12 | |
Bảng C | Chiều cao | [120; 150) | [150; 180) | [180; 210) | [210; 240) |
Số cây | 15 | 20 | 31 | 18 | |
Bảng D | Số sách | [0; 10) | [10; 20) | [20; 30) | [30; 40) |
Số khách hàng | 12 | 5 | 7 | 10 |
Chọn bảng số liệu có độ dài nhóm số liệu bằng 10?
Bảng A có độ dài nhóm số liệu là: 5
Bảng B có độ dài nhóm số liệu là: 2,5
Bảng C có độ dài nhóm số liệu là: 30
Bảng D có độ dài nhóm số liệu là: 10
Đơn giản biểu thức , ta có
Ta có:
Cho công thức biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với
là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.
Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số đạt giá trị lớn nhất.
Khi đó .
Vì nên ta có
.
Do đó (tháng đầu tiên của năm)
Cho . Tính giá trị biểu thức
Do nên bình phương hai vế ta được:
Vậy
Tìm chu kì T của hàm số
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của AB và CD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:
Hình vẽ minh họa
Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là AB và CD nên giao tuyến của chúng là đường thẳng đi qua S và song song với AB và CD tức song song với BI.
Cho hình chóp có đáy
là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng
qua
, song song với
. Thiết diện tạo bởi
và hình chóp là hình gì?
Hình vẽ minh họa
Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.
Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.
Gọi I là giao điểm của a với SD.
Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.
Gọi J lần lượt là giao điểm của b với SC.
Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJ vì GH // IJ //CD.
Cho tứ giác và một điểm
không thuộc mặt phẳng
. Trên đoạn
lấy một điểm
không trùng với
và
.Gọi
là giao điểm của đường thẳng
với mặt phẳng
. Khi đó
là giao tuyến của hai mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có (1)
Gọi .
Khi đó:
Từ (1) và (2) suy ra
Trong mặt phẳng . Gọi
.
Khi đó:
Dễ thấy
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Cỡ mẫu của mẫu số liệu là:
Cỡ mẫu của mẫu số liệu là:
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Sử dụng công thức
Ta có:
Cho phương trình bậc ba: (m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.
Ta có:
Để ba nghiệm của phương trình lập thành một cấp số nhân
Người ta thiết kế một cái tháp gồm 11 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích đế tháp là , tính diện tích mặt trên cùng gần nhất với giá trị nào sau đây?
Gọi là diện tích đế tháp và
là diện tích bề mặt trên của tầng thứ n, với
.
Theo giả thiết ta có:
Dãy số lập thành sấp số nhân với số hạng đầu tiên là
, công sai
.
Diện tích mặt trên cùng của tháp là:
Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:
Thời gian (phút) | [0; 5) | [5; 10) | [10; 15) | [15; 20) | [20; 25) |
Số học sinh | 8 | 16 | 4 | 2 | 2 |
Giá trị đại diện nhóm [20; 25) bằng bao nhiêu?
Giá trị đại diện nhóm [20; 25) là:
Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.
Sử dụng công thức
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.
Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.
Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.
Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.
Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:
7,3 | 7,8 | 7,5 | 6,6 | 8,5 | 8,3 | 8,3 |
7,5 | 8,4 | 8,6 | 7,4 | 8,2 | 8,0 | 8,1 |
8,7 | 8,2 | 8,8 | 8,1 | 7,7 | 7,8 | 8,5 |
7,0 | 7,9 | 6,9 | 9,4 | 9,0 | 8,0 | 8,7 |
8,9 | 7,6 | 8,0 | 8,2 | 7,9 | 7,7 | 7,2 |
Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:
Khoảng biến thiên:
Ta chia thành các nhóm sau:
Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:
Chiều cao (m) | Số cây |
[6,5; 7) | 2 |
[7; 7,5) | 4 |
[7,5; 8) | 9 |
[8; 8,5) | 11 |
[8,5; 9) | 7 |
[9; 9,5) | 2 |
Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).
Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:
7,8 | 7,7 | 7,5 | 7,8 | 7,7 | 7,6 | 8,7 |
7,6 | 7,5 | 7,5 | 7,3 | 7,1 | 8,1 | 8,4 |
7,0 | 7,1 | 7,2 | 7,3 | 7,4 | 8,5 | 8,3 |
7,2 | 7,1 | 7,0 | 6,7 | 6,6 | 8,6 | 8,2 |
6,9 | 6,8 | 6,5 | 6,2 | 6,3 |
Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?
Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:
Thời gian (giây) | Tần suất (%) |
[6,0; 6,5) | 6,06 |
[6,5; 7,0) | 15,15 |
[7,0; 7,5) | 30,3 |
[7,5; 8,0) | 27,27 |
[8,0; 8,5) | 12,12 |
[8,5; 9) | 9,1 |
Tổng | 100% |
Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:
Cho hình chóp có
và
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa
Giao tuyến của mặt phẳng và mặt phẳng
là đường thẳng
.
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Giá trị tứ phân vị thứ ba thuộc nhóm số liệu nào?
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Đáp án đúng vì MN // AD do trong tam giác SAD có MN là đường trung bình mà BC// AD nên MN // BC
Đáp án đúng vì ON là đường trung bình của tam giác SBD
Đáp án đúng vì OM là đường trung bình của tam giác SAC
Đáp án sai vì giả sử ON //SC mà OM //SC nên M ≡ N vô lí.
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Cho cấp số nhân có các số hạng lần lượt là . Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Tính cân nặng trung bình của học sinh lớp 11H?
Ta có:
Cân nặng (kg) | Giá trị đại diện | Số học sinh |
[45; 50) | 47,5 | 5 |
[50; 55) | 52,5 | 12 |
[55; 60) | 57,5 | 10 |
[60; 65) | 62,5 | 6 |
[65; 70) | 67,5 | 5 |
[70; 75) | 72,5 | 8 |
Cân nặng trung bình của học sinh lớp 11H là:
Mệnh đề nào sau đây sai?
Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Chọn đáp án đúng?
Ta có:
Cân nặng (kg) | Số học sinh | Tần số tích lũy |
[45; 50) | 5 | 5 |
[50; 55) | 12 | 17 |
[55; 60) | 10 | 27 |
[60; 65) | 6 | 33 |
[65; 70) | 5 | 38 |
[70; 75) | 8 | 46 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Cho dãy số (un) biết . Mệnh đề nào sau đây đúng?
Ta có
Xét tỉ số:
Vậy (un) là dãy số tăng.
Cho dãy số . Tìm số hạng thứ 5 của dãy số:
Sử dụng công thức:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Cho hàm số . Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?
Ta có:
y.(cosx + 2) = 1 – m.sinx
=> m.sinx + y.cosx = 1 – 2y
Phương trình có nghiệm khi
Nghiệm của phương trình là
=>
=>
Theo yêu cầu bài toán ta có:
Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | x |
[15; 20) | 13 |
[20; 25) | 12 |
[25; 30) | y |
Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?
Ta có:
Lại có:
Thời gian (phút) | Số nhân viên | Tần số tích lũy |
[0; 5) | 25 | 25 |
[5; 10) | 14 | 39 |
[10; 15) | x | 39 + x |
[15; 20) | 13 | 52 + x |
[20; 25) | 12 | 64 + x |
[25; 30) | y | 64 + x + y |
Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)
Khi đó:
Cho tổng . Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Tìm tập xác định của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Phương trình có hai họ nghiệm có dạng
và
,
. Khi đó, tính
?
Ta có .
.
Tính tổng T tất cả các nghiệm của phương trình trên đoạn
.
Biến đổi cos 2x và đưa về dạng toán giải PT bậc 2 đối với 1 hàm số lượng giác.
Phương trình
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính mốt?
Ta có:
Số tiền (nghìn đồng) | Số người |
|
[0; 50) | 5 |
|
[50; 100) | 12 | |
[100; 150) | 23 | |
[150; 200) | 17 | |
[200; 250) | 3 |
|
| N = 60 |
|
Ta có:
=> Mốt của dấu hiệu là:
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
(1)
Ta có là đường trung bình của tam giác
.
.
Cường độ dòng điện trong một đoạn mạch là (A). Tại thời điểm
thì cường độ trong mạch có giá trị bằng.
Thay vào biểu thức cường độ dòng điện ta được:
.
Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Trong không gian có 3 vị trí tương đối giữa đường thẳng và mặt phẳng
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
là điểm thuộc đoạn
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số
.
Hình vẽ minh họa
Giả sử . Nối
với
cắt
tại
Suy ra
Ta có: . Suy ra
.
Với giá trị nào của thì các số hạng
theo thứ tự đó lập thành cấp số nhân?
Ta có: các số hạng lập thành cấp số nhân
Vậy
Cho hình chóp , đáy là hình bình hành tâm
, gọi
lần lượt là trung điểm
và
. Chọn khẳng định sai.
Hình vẽ minh họa
Ta có là điểm chung của
và
.
Do lần lượt là trung điểm
và
nên ta có
là hình bình hành.
Vì .
Khi đó cắt
theo giao tuyến đi qua
và song song với
là
.
Từ đó ta thấy đáp án
, với
là trung điểm
.
, với
là trung điểm
.
, với
là trung điểm
.
Là các đáp án đúng
Vì là trung điểm
suy ra
.
Phương trình có một nghiệm thuộc khoảng
là
Ta có .
Do đó là một nghiệm của phương trình
thuộc khoảng
.
Cho . Chọn khẳng định đúng.
Đặt
Có
.
Vậy .
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy P sao cho PB = 2PD. Khi đó giao điểm của đường thẳng CD với (MNP) là:
Hình vẽ minh họa
Trong tam giác , gọi
Khi đó .
Vậy giao điểm của đường thẳng với
là giao điểm của
và
.