Ôn tập chương 4 Quan hệ song song trong không gian

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tính số cạnh của bát giác

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Hướng dẫn:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 2: Thông hiểu
    Chọn khẳng định đúng

    Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD \subset (SAD) \\
BC \subset (SBC) \\
AD//BC \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d//AD//BC và d đi qua S

  • Câu 3: Nhận biết
    Tìm vị trí tương đối hai đường thẳng

    Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là

    Hướng dẫn:

    Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.

  • Câu 4: Nhận biết
    Chọn khẳng định đúng

    Cho ba mặt phẳng (\alpha),(\beta),(\gamma) lần lượt giao nhau theo các giao tuyến phân biệt m,n,d. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Theo định lí về giao tuyến của ba mặt phẳng thì m,n,d đôi một song song hoặc đồng quy.

  • Câu 5: Vận dụng cao
    Tỉ số độ dài cạnh AB và CD

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy nhỏ CD. Lấy các điểm I \in AD;J \in BC sao cho IA = ID;JB = JC, G là trọng tâm tam giác SAB. Để giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình bình hành thì tỉ số độ dài cạnh \frac{AB}{CD} bằng:

    Hướng dẫn:

    Hình biểu diễn

    Ta có: (IJG) \cap (SAB) = EF với E \in SA,F \in SB và đi qua G, song song với AB//IJ.

    => Giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình thang EFJI. Tính EF = \frac{2}{3}AB;IJ = \frac{1}{2}(AB +CD)

    Để hình thang EFJI là hình bình hành thì

    \Leftrightarrow EF = IJ

    \Leftrightarrow \frac{2}{3}AB =\frac{1}{2}(AB + CD)

    \Leftrightarrow AB = 3CD

    \Leftrightarrow \frac{AB}{CD} =3

  • Câu 6: Nhận biết
    Tìm số mặt phẳng

    Cho hai đường thẳng song song a và b. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Hướng dẫn:

    Tất cả những mặt phẳng chứa a và không chứa b đều là những mặt phẳng song song với b.

  • Câu 7: Thông hiểu
    Tìm mặt phẳng song song với mặt phẳng đã cho

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hướng dẫn:

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 8: Thông hiểu
    Tìm các cặp cạnh cắt nhau

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hướng dẫn:

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 9: Thông hiểu
    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hướng dẫn:

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Gọi d là giao tuyến của mặt phẳng (P)(Q). Nếu đường thẳng d' song song với cả hai mặt phẳng thì:

    Hướng dẫn:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

  • Câu 11: Vận dụng
    Tìm hình xác định bởi các giao tuyến

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hướng dẫn:

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 12: Thông hiểu
    Tìm giao tuyến d của hai mặt phẳng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm ADAC, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng (GMN)(BCD).

    Hướng dẫn:

    Hình vẽ minh họa

    Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G

    => Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).

  • Câu 13: Nhận biết
    Xác định khẳng định đúng

    Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?

    Hướng dẫn:

    Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.

    Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).

    Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).

  • Câu 14: Thông hiểu
    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp S.ABCD có đáy là hình thang có cạnh đáy là AB,CD. Gọi M,N lần lượt là trung điểm của AD;BC, điểm P
\in SA;(P eq S;P eq A). Xác định giao tuyến của hai mặt phẳng (SAB);(MNP).

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
P = (SAB) \cap (MNP) \\
MN \subset (MNP) \\
AB \subset (SAB) \\
MN//AB \\
\end{matrix} ight.

    \Rightarrow (SAB) \cap (MNP) =
PQ với Px//AB//MN,Q \in
SB.

    Vậy giao tuyến của hai mặt phẳng (SAB);(MNP) là đường thẳng qua P và song song với AB.

  • Câu 15: Vận dụng
    Tính diện tích hình tạo bởi các giao tuyến

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hướng dẫn:

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 14 lượt xem
Sắp xếp theo