Luyện tập Các quy tắc tính đạo hàm KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị của tham số m

    Biết đạo hàm của hàm số y = f(x) = \frac{1}{\sqrt{x^{2} + 1}} được biểu diễn như sau:y' =
\frac{mx}{\sqrt{\left( x^{2} + 1 ight)^{3}}}. Giá trị của tham số m là:

    Hướng dẫn:

    Ta có:

    f'(x) = \left( \frac{1}{\sqrt{x^{2}
+ 1}} ight)'

    = - \dfrac{\dfrac{2x}{2\sqrt{x^{2} +1}}}{x^{2} + 1} = - \dfrac{x}{\sqrt{\left( x^{2} + 1ight)^{3}}}

    Khi đó m = - 1

  • Câu 2: Nhận biết
    Tính y'

    Đạo hàm của hàm số y = (1 - 2x)^{3} là:

    Hướng dẫn:

    Ta có: y = (1 - 2x)^{3}

    \Rightarrow y' = 3(1 - 2x)^{2}(1 -
2x)'

    \Rightarrow y' = 3(1 - 2x)^{2}( - 2)
= - 6(1 - 2x)^{2}

  • Câu 3: Thông hiểu
    Chọn khẳng định đúng

    Cho hình tròn bán kính r có diện tích là S(r). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    S(r) = \pi.r^{2} \Rightarrow S'(r) =
2\pi.r

    Suy ra S'\left( r_{0}
ight) là chu vi của đường tròn bán kính r_{0}.

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức H

    Phương trình chuyển động của một chất điểm là S(t) = 4t^{2} - 2t^{3} + 5 với t là khoảng thời gian tính từ lúc bắt đầu chuyển động và S là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là x(m/s) tại thời điểm t = y(s) . Xác định giá trị biểu thức H = x.y .

    H = 16/9

    (Kết quả được ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Phương trình chuyển động của một chất điểm là S(t) = 4t^{2} - 2t^{3} + 5 với t là khoảng thời gian tính từ lúc bắt đầu chuyển động và S là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là x(m/s) tại thời điểm t = y(s) . Xác định giá trị biểu thức H = x.y .

    H = 16/9

    (Kết quả được ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    S(t) = 4t^{2} - 2t^{3} + 5

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 6t^{2} + 8t;(a = - 6;b = 8)

    Vận tốc của chuyển động đạt giá trị lớn nhất khi t = - \frac{b}{2a} = \frac{2}{3}(s)

    \Rightarrow v_{\max} = v\left(
\frac{2}{3} ight) = \frac{8}{3}

    Vậy H = x.y = \frac{2}{3}.\frac{8}{3} =
\frac{16}{9}

  • Câu 5: Nhận biết
    Tính đạo hàm của hàm số

    Cho hàm số y =
1000^{2 - x}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: y = 1000^{2 - x}

    \Rightarrow y' = (2 -
x)'.1000^{2 - x}.ln1000

    \Rightarrow y' = - 1000^{2 -x}.\ln1000

  • Câu 6: Thông hiểu
    Tìm tất cả giá trị của tham số m

    Cho hàm số y =
\log\left( x^{2} - 2x + m + 1 ight) với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho xác định trên tập số thực?

    Hướng dẫn:

    Để hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi x^{2} - 2x - m +
1 > 0,\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' <
0

    \Leftrightarrow ( - 1)^{2} - 1(m + 1)
< 0 \Leftrightarrow m > 0

  • Câu 7: Nhận biết
    Xác định công thức đạo hàm

    Đạo hàm của hàm số y = f(x) = \frac{1}{2}x^{4} + \frac{5}{3}x^{3} -
\sqrt{2x} + m^{2} (với m = const) là:

    Hướng dẫn:

    Ta có:

    y = f(x) = \frac{1}{2}x^{4} +
\frac{5}{3}x^{3} - \sqrt{2x} + m^{2}

    \Rightarrow f'(x) =
\frac{1}{2}.4x^{3} + \frac{5}{3}.3x^{2} - \frac{1}{\sqrt{2x}} +
0

    \Rightarrow f'(x) = 2x^{3} + 5x^{2}
- \frac{1}{\sqrt{2x}}

  • Câu 8: Vận dụng
    Điền đáp án vào ô trống

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Với x \in \lbrack 0; + \infty) ta có: \left\{ \begin{matrix}
x + 1 > 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > - 4 \\
\end{matrix} ight.

    f(x) = \ln\left( \frac{x + 1}{x + 4}
ight) = \ln(x + 1) - \ln(x + 4)

    \Rightarrow f'(x) = \frac{1}{x + 1}
- \frac{1}{x + 4}

    Khi đó:

    T = f'(0) + f'(3) + f'(6) +
... + f'(2019)

    P = \left( 1 - \frac{1}{4} ight) +
\left( \frac{1}{4} - \frac{1}{7} ight) + \left( \frac{1}{7} -
\frac{1}{10} ight) + ... + \left( \frac{1}{2020} - \frac{1}{2023}
ight)

    P = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 9: Vận dụng
    Tính tổng các phần tử trong tập hợp S

    Cho đường cong (C):y = x^{4} - 2x^{2} + m - 2 với m là tham số. Gọi S là tập các giá trị của tham số m sao cho đồ thị hàm số (C) có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập S là:

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 4x

    Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0

    Gọi tiếp điểm là M\left( x_{0};y_{0}
ight) \in (C) khi đó y'\left(
x_{0} ight) = 4{x_{0}}^{3} - 4x_{0} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 0 \Rightarrow y_{0} = m - 2 \\
x_{0} = \pm 1 \Rightarrow y_{0} = m - 3 \\
\end{matrix} ight.

    Để có đúng 1 tiếp tuyến song song với trục hoàn thì

    \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m - 3 eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m - 2 eq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m eq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m eq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m = 2;m = 3

    Vậy tổng các giá trị m là 5.

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Xác định công thức đạo hàm của hàm số y = \sin\left( x^{2} - 3x + 2
ight)?

    Hướng dẫn:

    Ta có:

    y = \sin\left( x^{2} - 3x + 2
ight)

    \Rightarrow y' = \left\lbrack
\sin\left( x^{2} - 3x + 2 ight) ightbrack'

    = \left( x^{2} - 3x + 2ight)'.\cos\left( x^{2} - 3x + 2 ight)

    = (2x - 3)\cos\left( x^{2} - 3x + 2
ight)

  • Câu 11: Nhận biết
    Tính đạo hàm của hàm số

    Đạo hàm của hàm số y = 5^{x}

    Hướng dẫn:

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 5^{x} \Rightarrow y' =5^{x}.\ln5

  • Câu 12: Thông hiểu
    Tính các giá trị của m

    Cho hàm số y =
f(x) = (2m - 1)e^{x} + 3. Biết f'( - \ln3) = \frac{5}{3}. Tính giá trị tham số m?

    Hướng dẫn:

    Ta có:

    y = f(x) = (2m - 1)e^{x} +
3

    \Rightarrow f'(x) = (2m -
1).e^{x}

    \Rightarrow f'( - \ln3) = (2m -1).e^{- \ln3} = \frac{2m - 1}{e^{\ln3}} = \frac{2m - 1}{3}

    f'( - \ln3) = \frac{5}{3}\Leftrightarrow \frac{2m - 1}{3} = \frac{5}{3} \Leftrightarrow m =3

  • Câu 13: Nhận biết
    Tìm mệnh đề sai

    Cho hàm số y =
f(x) = \frac{3x + 5}{- 1 + 2x}. Mệnh đề nào dưới đây là mệnh đề đúng?

    Hướng dẫn:

    Ta có:

    f(x) = \frac{3x + 5}{- 1 +
2x}

    \Rightarrow f'(x) = \frac{(3x +
5)'( - 1 + 2x) - ( - 1 + 2x)'(3x + 5)}{( - 1 +
2x)^{2}}

    \Rightarrow f'(x) = \frac{3(2x - 1)
- 2(3x + 5)}{( - 1 + 2x)^{2}}

    \Rightarrow f'(x) = \frac{- 13}{( -
1 + 2x)^{2}}

  • Câu 14: Nhận biết
    Tính đạo hàm của hàm số f(x)

    Xác định đạo hàm của hàm số y = \log_{4}\left( 2x^{2} - 3 ight)?

    Hướng dẫn:

    Ta có:

    y' = \frac{4x}{\left( 2x^{2} - 3ight).\ln4} = \frac{4x}{\left( 2x^{2} - 3 ight).2.\ln2}

    = \frac{2x}{\left( 2x^{2} - 3ight).\ln2}

  • Câu 15: Thông hiểu
    Chọn đáp án chính xác

    Xác định đạo hàm của hàm số y = f(x) = \frac{x + 1}{4^{x}}?

    Hướng dẫn:

    Ta có: y = f(x) = \frac{x +
1}{4^{x}}

    \Rightarrow f'(x) = \left( \frac{x +
1}{4^{x}} ight)' = \frac{(x + 1)'.4^{x} - (x + 1).\left( 4^{x}
ight)'}{\left( 4^{x} ight)^{2}}

    = \frac{4^{x} - (x +1).4^{x}.\ln4}{\left( 4^{x} ight)^{2}}

    = \frac{4^{x}(1 - x.\ln4 - \ln4)}{\left(4^{x} ight)^{2}}

    = \frac{1 - 2x\ln2 -2\ln2}{4^{x}}

    = \frac{1 - 2(x +1)\ln2}{2^{2x}}

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Tìm đạo hàm của hàm số y = \left( 2x^{2} + x - 1 ight)(2 -
3x)?

    Hướng dẫn:

    Ta có: y = \left( 2x^{2} + x - 1
ight)(2 - 3x)

    \Rightarrow y' = \left( 2x^{2} + x -
1 ight)'(2 - 3x) + \left( 2x^{2} + x - 1 ight)(2 -
3x)'

    = (4x + 1)(2 - 3x) + \left( 2x^{2} + x -
1 ight).( - 3)

    = - 12x^{2} + 8x - 3x + 2 - 6x^{2} - 3x
+ 3

    = - 18x^{2} + 2x + 5

  • Câu 17: Nhận biết
    Xác định đạo hàm của hàm số

    Tính đạo hàm của hàm số y = f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}} tại x_{0} = 0

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:

    f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}}

    f'(x) = \dfrac{3\sqrt{x^{2} + 4} -(3x + 1).\dfrac{x}{\sqrt{x^{2} + 4}}}{\left( \sqrt{x^{2} + 4}ight)^{2}}

    f'(x) = \frac{12 - x}{\left(
\sqrt{x^{2} + 4} ight)^{3}}

    f'(0) = \frac{12 - 0}{\left(
\sqrt{0^{2} + 4} ight)^{3}} = \frac{3}{2}

  • Câu 18: Vận dụng
    Xác định số các đường tiếp tuyến

    Cho đồ thị hàm số (C):y = \frac{2x - 1}{x - 1}. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm A,B sao cho \frac{OA}{OB} = 4?

    Hướng dẫn:

    Giả sử tiếp tuyến của (C) tại điểm M\left( x_{0};y_{0} ight) cắt Ox tại A và cắt Oy tại B sao cho \frac{OA}{OB} =
4.

    Do tam giác OAB vuông tại O nên \tan\widehat{A} = \frac{OB}{OA} =
\frac{1}{4}

    Suy ra hệ số góc tiếp tuyến bằng \pm
\frac{1}{4}

    Hệ số góc tiếp tuyến là y'\left(
x_{0} ight) = \frac{- 1}{\left( x_{0} - 1 ight)^{2}} <
0

    \Rightarrow \frac{- 1}{\left( x_{0} - 1
ight)^{2}} = - \frac{1}{4}

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 3 \Rightarrow y_{0} = \dfrac{5}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{13}{4} \\x_{0} = - 1 \Rightarrow y_{0} = \dfrac{3}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{5}{4} \\\end{matrix} ight.

    Vậy có hai tiếp tuyến thỏa mãn điều kiện.

  • Câu 19: Thông hiểu
    Tính đạo hàm của hàm số

    Xác định đạo hàm của hàm số y = \left( 2 - \sqrt{3} ight)^{x} trên tập số thực.

    Hướng dẫn:

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a;(a > 0;a eq 1)

    y = \left( 2 - \sqrt{3} ight)^{x}\Rightarrow y' = \left( 2 - \sqrt{3} ight)^{x}.\ln\left( 2 -\sqrt{3} ight)

    \Rightarrow y' = \frac{1}{\left( 2 +\sqrt{3} ight)^{x}}.\ln\left( 2 - \sqrt{3} ight)

    \Rightarrow y' = \left( 2 + \sqrt{3}ight)^{- x}.\ln\left( 2 - \sqrt{3} ight)

  • Câu 20: Vận dụng cao
    Chọn đáp án đúng

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1 lượt xem
Sắp xếp theo