Luyện tập Khoảng cách Kết nối tri thức

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tính khoảng cách giữa hai đường thẳng SB và CD

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.

    Hướng dẫn:

    Hình vẽ minh họa:

    Vì AB // CD ⇒ CD // (SAB)

    => d(CD, (SAB)) = d(D, (SAB))

    Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.

    Xét tam giác ABD vuông tại A ta có:

    AB2 + AD2 = BD2 = 4a2 => AD = a\sqrt{2}

  • Câu 2: Vận dụng
    Khoảng cách từ điểm C đến mặt phẳng (SAB)

    Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.

    Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).

    Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)

    Từ (1), (2) suy ra AB ⊥ (SHM)

    Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)

    Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK

    Dễ thấy CH ∩ (SAB) = {A}

    \frac{d\left( C;(SAB) ight)}{d\left(H;(SAB) ight)} = \frac{CA}{HA} = \frac{3}{2}

    Do đó d\left( C;(SAB) ight) =\frac{3}{2}d\left( H;(SAB) ight)

    Theo giả thiết ∆ABC đều => CD =\frac{3a\sqrt{3}}{2}

    Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:

    \frac{HM}{CD} = \frac{AH}{AC} =\frac{2}{3}

    Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:

    HM = \frac{2}{3}CD \Rightarrow HM =\frac{2}{3}.\frac{3a\sqrt{3}}{2} = a\sqrt{3}

  • Câu 3: Thông hiểu
    Tính khoảng cách giữa SB và DC

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hướng dẫn:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

  • Câu 4: Vận dụng cao
    Tính tỉ số NB và NC’

    Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số \frac{NB}{NC'} bằng:

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi H, I lần lượt là trung điểm của AB, AC’

    Suy ra HI // BC’

    Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH

    Dễ thấy BK ⊥ (SCH)

    Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’

    Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành

    Khi đó MN là đoạn vuông góc chung cần tìm

    Ta có:

    \frac{NB}{BC'} = \frac{MK}{2HI} =\frac{1}{2}\left( 1 + \frac{HK}{A'H} ight)

    = \frac{1}{2}\left( 1 + \frac{HK}{HS}ight) = \frac{1}{2}\left( 1 + \frac{HB^{2}}{HS^{2}}ight)

    Do 2HB = SB nên:

    \frac{NB}{BC'} = \frac{1}{2}\left( 1+ \frac{HB^{2}}{HB^{2} + SB^{2}} ight)

    = \frac{1}{2}\left( 1 +\frac{HB^{2}}{HB^{2} + 4HB^{2}} ight) = \frac{3}{5}

    => \frac{NB}{NC'} =\frac{3}{2}

  • Câu 5: Nhận biết
    Tính chiều cao của hình chóp

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hướng dẫn:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 6: Vận dụng
    Tính độ dài cạnh CD

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Hướng dẫn:

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 7: Nhận biết
    Tỉ lệ khoảng cách

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    Hướng dẫn:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 8: Nhận biết
    Mệnh đề nào là mệnh đề đúng

    Mệnh đề nào là mệnh đề đúng?

    Hướng dẫn:

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 9: Vận dụng
    Tính khoảng cách giữa hai đường thẳng CK, A’D

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.

    Hướng dẫn:

    Hình vẽ minh họa:

    Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’

    => KD’ là đường trung bình của ∆PCC’

    => D’ là trung điểm của PC’

    Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’

    Ta có: A’D // B’C => A’D // (AKB’)

    => d(CK, A’D) = d (A’,(CKB’)) = \frac{1}{2}d(C’,(CPB’))

    Xét tứ diện PCC’B’ ta có:

    C’P, C’B và C’B đôi một vuông góc với nhau

    Đặt d(C’, (CPB’)) = x, thì:

    \frac{1}{x^{2}} = \frac{1}{CC'^{2}}+ \frac{1}{C'B'^{2}} + \frac{1}{C'P^{2}}

    \Rightarrow \frac{1}{x^{2}} =\frac{1}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{4a^{2}} =\frac{9}{4a^{2}}

    \Rightarrow d\left( C';(CPB')ight) = x = \frac{2a}{3}

    \Rightarrow d(CK;A'D) =\frac{1}{2}d\left( C';(CPB') ight) = \frac{1}{2}.\frac{2a}{3}= \frac{a}{3}

  • Câu 10: Thông hiểu
    Tính khoảng cách giữa hai đường thẳng HK và SD

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD. 

    Hướng dẫn:

    Gọi E=HK∩AC. Do HK//BD nên suy ra

    d(HK;SD)=d(HK;(SBD))=d(E;(SBD))=d(A;(SBD))/2 (vì OE=AO/2=1/2)

    Kẻ AF⊥SO(1) ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SA} \end{array}} ight.

    ⇒BD⊥(SAC)⇒BD⊥AF(2)

    Từ (1) và (2) ⇒AF⊥(SBD), khi đó d(A;(SBD))=AF

    \begin{matrix}  AF = \dfrac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} \hfill \\   = \dfrac{{2a.\dfrac{{a\sqrt 2 }}{2}}}{{\sqrt {{{\left( {2a} ight)}^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{2a}}{3} \hfill \\   \Rightarrow d\left( {HK;SD} ight) = \dfrac{1}{2}AF = \dfrac{a}{3} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết
    Tính diện tích tam giác BCD

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Hướng dẫn:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 12: Thông hiểu
    Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Hướng dẫn:

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 13: Thông hiểu
    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hướng dẫn:

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu
    Chọn mệnh đề đúng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
SA\bot BC \\
AB\bot SA \\
AB\bot BC \\
\end{matrix} ight. => d(SA, BC) = AB

  • Câu 15: Nhận biết
    Mệnh đề nào là mệnh đề sai?

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Hướng dẫn:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 13 lượt xem
Sắp xếp theo