Luyện tập Mẫu số liệu ghép nhóm

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Số nhóm của mẫu số liệu

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [145; 150)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    6

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Hướng dẫn:

    Quan sát bảng số liệu ta thấy mẫu số liệu có 5 nhóm.

  • Câu 2: Thông hiểu
    Tìm khoảng biến thiên của dãy dữ liệu

    Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?

    Hướng dẫn:

    Ta có:

    Giá trị lớn nhất: 25

    Giá trị nhỏ nhất: 4

    Khoảng biến thiên là: 25 – 4 = 21

  • Câu 3: Thông hiểu
    Điền đáp án vào ô trống

    Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:

    Nữ

    6

    7

    9

    8

    10

    10

    Nam

    7

    9

    12

    14

    13

    17

    a) Khoảng biến thiên giá trị của nữ là: 4

    Khoảng biến thiên giá trị của nam là: 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11

    Đáp án là:

    Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:

    Nữ

    6

    7

    9

    8

    10

    10

    Nam

    7

    9

    12

    14

    13

    17

    a) Khoảng biến thiên giá trị của nữ là: 4

    Khoảng biến thiên giá trị của nam là: 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11

    a) Khoảng biến thiên giá trị của nữ là: 10 – 6 = 4

    Khoảng biến thiên giá trị của nam là: 17 – 7 = 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 17 -6 = 11

  • Câu 4: Thông hiểu
    Tính khoảng biến thiên

    Tính khoảng biến thiên của mẫu dữ liệu cho dưới đây:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Hướng dẫn:

    Khoảng biến thiên mẫu dữ liệu ghép nhóm được đưa ra bởi công thức:

    Khoảng biến thiên = Giới hạn trên của khoảng cao nhất – Giới hạn dưới của khoảng thấp nhất

    Giới hạn trên của khoảng cao nhất là: 80

    Giới hạn dưới của khoảng thấp nhất là: 10

    => Khoảng biến thiên là: 80 – 10 = 70

  • Câu 5: Nhận biết
    Xác định bảng phân phối tần số liên tục

    Cho bảng số liệu:

    Đại diện X

    16 – 20

    21 – 25

    26 – 30

    31 – 35

    36 – 40

    41 – 45

    46 – 50

    51 – 55

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Cho biết bảng số liệu trên có phải bảng phân phối tần số liên tục không?

    Hướng dẫn:

    Dữ liệu đã cho không phải là phân phối tần số liên tục.

    Bây giờ, chúng ta phải chuyển đổi dữ liệu đã cho thành phân phối tần số liên tục bằng cách trừ 0,5 từ giới hạn dưới và thêm 0,5 vào giới hạn trên của mỗi khoảng thời gian của nhóm.

    Đại diện X

    [15,5; 20,5)

    [20,5; 25,5)

    [25,5; 30,5)

    [30,5; 35,5)

    [35,5; 40,5)

    [40,5; 45,5)

    [45,5; 50,5)

    [50,5; 55,5)

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Ở đây

    Giới hạn trên của khoảng cao nhất là 55,5

    Giới hạn dưới của khoảng thấp nhất là 15,5

    => Khoảng biến thiên là 55,5 – 15,5 = 40

  • Câu 6: Thông hiểu
    Điền đáp án vào ô trống

    Chuyển đổi dữ liệu sau: 3; 5; 1; 2; 3; 2; 2; 1; 6; 9; 5; 3; 9; 2 thành dạng ghép nhóm, chia thành 5 nhóm có độ dài bằng nhau:

    Đại diện X

    Tần số

    [0; 2)

    2

    [2; 4)

    7

    [4; 6)

    2

    [6; 8)

    1

    [8; 10)

    2

    Đáp án là:

    Chuyển đổi dữ liệu sau: 3; 5; 1; 2; 3; 2; 2; 1; 6; 9; 5; 3; 9; 2 thành dạng ghép nhóm, chia thành 5 nhóm có độ dài bằng nhau:

    Đại diện X

    Tần số

    [0; 2)

    2

    [2; 4)

    7

    [4; 6)

    2

    [6; 8)

    1

    [8; 10)

    2

    Để chia thành 5 nhóm với độ dài bằng nhau ta lấy điểm đầu mút phải trái của nhóm đầu tiên là 0 và đầu mút phải của nhóm cuối cùng là 10 với độ dài mỗi nhóm là 6 – 4 = 2.

    Ta được mẫu số ghép nhóm như sau:

    Đại diện X

    Tần số

    [0; 2)

    2

    [2; 4)

    7

    [4; 6)

    2

    [6; 8)

    1

    [8; 10)

    2

  • Câu 7: Nhận biết
    Tính tổng tần số

    Tính tổng tần số của bảng số liệu:

    Khoảng thời gian

    (giờ)

    Tần số

    [0; 5)

    8

    [6; 11)

    1

    [12; 17)

    4

    [18; 23)

    2

    Hướng dẫn:

    Tổng tần số của mẫu số liệu là: 8 + 1 + 4 + 2 = 15

  • Câu 8: Vận dụng
    Tính số nhóm dữ liệu tối đa

    Cho dãy số liệu:

    30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88,

    40, 34, 30, 35, 35, 44, 66, 75, 84, 95, 96.

    Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [63; 72). Tính số nhóm dữ liệu tối đa được tạo thành.

    Hướng dẫn:

    Trong các nhóm số liệu có nhóm [63; 72) thì độ dài của nhóm là: 10 

    Khoảng dữ liệu đã cho là: 112 – 30 = 82

    Ta có \frac{82}{10} \approx8,2

    Vậy số nhóm tối đa là 9 nhóm.

  • Câu 9: Vận dụng
    Tính số học sinh

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Hướng dẫn:

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

  • Câu 10: Vận dụng
    Tính tần số nhóm

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Hướng dẫn:

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 73 lượt xem
Sắp xếp theo