Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, SA ⊥ (ABCD), AD = CD = a, AB = 2a. Gọi E là trung điểm của AB. Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.
Từ giả thiết suy ra ADCE là hình vuông
=> CE ⊥ AB, CE = AD = a
Ta có: CE ⊥ AB, CE ⊥ SA => CE ⊥ (SAB)
Vì CE = AD = a =>
=> Tam giác ABC vuông tại C => CB ⊥ AB
Kết hợp với CB ⊥ SA => CB ⊥ (SAC)
Ta có:
CD ⊥ AD, CD ⊥ SA => CD ⊥ (SAD)
=> Tam giác SDC vuông tại D
Dùng phương pháp loại trừ nên ta có: CE ⊥ (SDC) là khẳng định sai.