Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Hình vẽ minh họa:
Hình chóp tứ diện đều S.ABCD có tất cả các cạnh đều bằng a, ta tìm góc giữa hai mặt phẳng (SAD) và (SBC).
Gọi M, N là trung điểm các cạnh AD và BC, khi đó SM ⊥ AD và SN ⊥ BC (do các tam giác SBC; SAD là các tam giác đều).
Vì BC // AD nên giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d qua S và song song AD, BC.
Vì SM ⊥ AD và SN ⊥ BC nên SM ⊥ d và SN ⊥ d mà SM ⊂ (SAD); SN ⊂ (SBC) góc giữa hai mặt phẳng (SAD) và (SBC) là góc .
Mặt bên là các tam giác đều cạnh a nên ; MN = AB = a.
Khi đó: