Luyện tập Định nghĩa và ý nghĩa của đạo hàm KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Điền đáp án vào chỗ trống

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Do \lim_{x ightarrow 2}\frac{f(x) -
16}{x - 2} = 12\lim_{x
ightarrow 2}(x - 2) = 0 \Rightarrow \lim_{x ightarrow 2}\left\lbrack
f(x) - 16 ightbrack = 0

    \Rightarrow \lim_{x ightarrow 2}f(x) =
16

    Ta có:

    \lim_{x ightarrow
2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x - 8}

    = \lim_{x ightarrow 2}\frac{5f(x) - 16
- 4^{3}}{(x - 2)(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow
2}\frac{5\left\lbrack f(x) - 16 ightbrack}{(x - 2)(x +
4)\left\lbrack \left( \sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x)
- 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow 2}\left\{
\frac{f(x) - 16}{(x - 2)}.\frac{5}{(x + 4)\left\lbrack \left(
\sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2}
ightbrack} ight\} = T

    \lim_{x ightarrow 2}\frac{f(x) -
16}{(x - 2)} = 12\lim_{x
ightarrow 2}\frac{5}{(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack} =
\frac{5}{288}

    Nên T = 12.\frac{5}{288} =
\frac{5}{24}

  • Câu 2: Thông hiểu
    Tính đạo hàm của hàm số

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Hướng dẫn:

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 3: Thông hiểu
    Điền đáp án vào ô trống

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Ta có: f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x} = \lim_{x ightarrow 0}\frac{3}{|x| +
1}

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{+}}\dfrac{3}{x + 1} = 3 \\\lim_{x ightarrow 0^{-}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{-}}\dfrac{3}{1 - x} = 3 \\\end{matrix} ight.

    \Rightarrow \lim_{x ightarrow
0^{+}}\frac{3}{|x| + 1} = \lim_{x ightarrow 0^{-}}\frac{3}{|x| + 1} =
3

    \Rightarrow \lim_{x ightarrow
0}\frac{3}{|x| + 1} = 3

    \Rightarrow f'(0) = \lim_{x
ightarrow 0^{+}}\frac{3}{|x| + 1} = 3

  • Câu 4: Vận dụng
    Viết phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết cosin góc tạo bởi tiếp tuyến và đường thẳng ∆: 4x − 3y = 0 bằng \frac{3}{5}.

    Hướng dẫn:

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Suy ra phương trình tiếp tuyến d có dạng y + y_{0} = k\left( x - x_{0} ight)

    => Tiếp tuyến d có một vecto pháp tuyến là \overrightarrow{n_{d}} = ( - k;1)

    Đường thẳng \Delta có một vecto pháp tuyến là: \overrightarrow{n_{\Delta}} =(4; - 3)

    Theo đề bài ta có:

    \cos(d;\Delta) = \frac{| - 4k -3|}{\sqrt{k^{2} + 1}.\sqrt{16 + 9}} = \frac{3}{5}

    \Leftrightarrow \left\lbrack\begin{matrix}k = 0 \\k = - \dfrac{24}{7} \\\end{matrix} ight.

    Với k = - \frac{24}{7}ta có: 3{x_{0}}^{2} - 6x_{0} = -\frac{24}{7} (vô nghiệm)

    Với k = 0 ta có: 3{x_{0}}^{2} - 6x_{0} = 0 \Leftrightarrow\left\lbrack \begin{matrix}x_{0} = 0 \\x_{0} = 2 \\\end{matrix} ight.

    Nếu x_{0} = 0 \Rightarrow y_{0} =2=> Phương trình tiếp tuyến cần tìm là y – 2 = 0 => y = 2

    Nếu x_{0} = 2 \Rightarrow y_{0} = -2=> Phương trình tiếp tuyến cần tìm là y + 2 = 0 => y = -2

  • Câu 5: Thông hiểu
    Tính đạo hàm của hàm số tại một điểm

    Cho hàm số f(x)
= \left\{ \begin{matrix}
(x - 1)^{2}\ \ khi\ x \geq 0 \\
- x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x_{0} = 0?

    Hướng dẫn:

    Ta có:

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}(x - 1)^{2} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( - x^{2} ight) = 0

    Suy ra f(0) = \lim_{x ightarrow
0^{+}}f(x) eq \lim_{x ightarrow 0^{-}}f(x)

    Nên hàm số không liên tục tại x_{0} =
0

    Vậy không tồn tại đạo hàm của hàm số y =
f(x) tại điểm x_{0} =
0.

  • Câu 6: Vận dụng cao
    Tính góc giữa hai tiếp tuyến

    Cho hai hàm số f(x) =\frac{1}{x\sqrt{2}};g(x) = \frac{x^{2}}{\sqrt{2}}. Gọi d_{1};d_{2} lần lượt là tiếp tuyến của mỗi đồ thị hàm số f(x);g(x) đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    \frac{1}{x\sqrt{2}} =\frac{x^{2}}{\sqrt{2}} \Leftrightarrow x = 1

    Ta có: d_{1} có hệ số góc k_{1} = f'(1) = -\frac{1}{\sqrt{2}}

    d_{2} có hệ số góc k_{2} = g'(1) = \sqrt{2}

    => k_{1}.k_{2} = - 1 \Rightarrowd_{1}\bot d_{2}

  • Câu 7: Vận dụng
    Tính và điền đáp án vào chỗ trống

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Đáp án là:

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Ta có:

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    \Rightarrow f'(x) = \left\{
\begin{matrix}
2x + a\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
3x^{2} - 2x - 8\ \ \ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Hàm số có đạo hàm tại điểm x =
2

    Suy ra 4 + a = 0 \Rightarrow a = -
4

    Mặt khác hàm số có đạo hàm tại điểm x =
2

    Suy ra \lim_{x ightarrow 2^{+}}f(x) =
\lim_{x ightarrow 2^{-}}f(x) = f(2)

    \Rightarrow 4 + 2a + b = - 2 \Rightarrow
b = 2

  • Câu 8: Thông hiểu
    Xác định đạo hàm của hàm số

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Hướng dẫn:

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 9: Vận dụng cao
    Tìm tọa độ điểm thỏa mãn điều kiện

    Trên đồ thị hàm số y = \frac{x + 3}{x +2} tại các điểm nào mà tiếp tuyến với đồ thị hàm số tạo với hai trục tọa độ một tam giác vuông cân?

    Hướng dẫn:

    Ta có:

    Tiếp tuyến tạo với hai trục tọa độ tam giác vuông cân khi và chỉ khi hệ số góc của tiếp tuyến k = \pm1.

    Ta có: f'(x) = - \frac{1}{(x +2)^{2}}

    => Hoành độ điểm thuộc đồ thị thỏa mãn yêu cầu bài toán là nghiệm của phương trình:

    - \frac{1}{(x + 2)^{2}} = - 1\Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight.

    Hai điểm thỏa mãn ( - 3;0),( -1;2)

  • Câu 10: Nhận biết
    Điền đáp án vào ô trống

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 11: Vận dụng
    Tính tích hai giá trị tham số

    Cho hàm số y =
f(x) xác định bởi công thức f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{2 - \sqrt {4 - x} }}{x}{\text{  }};0 < x < 4} \\ 
  {m{\text{          }};x = 0} \\ 
  {\dfrac{n}{x}{\text{         }};x \geqslant 4} 
\end{array}} ight.. Biết hàm số liên tục trên nửa khoảng \lbrack 0; + \infty). Tích của mn bằng bao nhiêu?

    Hướng dẫn:

    Tập xác định D = \lbrack 0; +
\infty)

    Hàm số liên tục trên \lbrack 0; +
\infty) nên ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{2 - \sqrt{4 - x}}{x}

    = \lim_{x ightarrow
0^{+}}\frac{x}{x\left( 2 + \sqrt{4 - x} ight)} =
\frac{1}{4}

    f(0) = m

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \dfrac{n}{x} = \dfrac{n}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2 - \sqrt {4 - x} }}{x} = \dfrac{1}{2} \hfill \\
  f\left( 4 ight) = \dfrac{n}{4} \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \\\dfrac{n}{4} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \ = 2 \\\end{matrix} ight.\  \Rightarrow m.n = \dfrac{1}{2}

  • Câu 12: Thông hiểu
    Tính đạo hàm tại x = 0

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 13: Vận dụng
    Tính đạo hàm của hàm số tại x = 0

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Hướng dẫn:

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 14: Thông hiểu
    Tính giá trị biểu thức

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 15: Thông hiểu
    Tính thời điểm khi vận tốc đạt min

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Hướng dẫn:

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Hướng dẫn:

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 17: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 3}\frac{f(x) - f(3)}{x - 3} =
2. Chọn khẳng định đúng?

    Hướng dẫn:

    Hàm số y = f(x) có đạo hàm tại điểm x_{0}

    f'\left( x_{0} ight) = \lim_{x
ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -
x_{0}}

    Nên khẳng định đúng là f'(3) =
2

  • Câu 18: Nhận biết
    Xác định tính đúng sai của mệnh đề

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 19: Nhận biết
    Chọn đáp án chính xác

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ \ khi\ x eq 1 \\- \dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tính đạo hàm của hàm số tại x_{0} = 1?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -
4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -
1}{\sqrt{3x + 1} + 2x} = - \frac{5}{4} eq f(1)

    Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (25%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 3 lượt xem
Sắp xếp theo