Luyện tập Đường thẳng và mặt phẳng song song KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Chọn khẳng định đúng

    Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

    Chọn khẳng định đúng

    Hướng dẫn:

    Gọi E là trung điểm của AB

    Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:

    \frac{{EM}}{{EC}} = \frac{{EN}}{{ED}} = \frac{1}{3} 

    Theo định lí Ta - lét ta có: MN // CD (1)

    CD \subset \left( {BCD} ight);CD \subset \left( {ACD} ight) (2)

    Từ (1) và (2) => MN // (BCD); MN // (ACD)

  • Câu 2: Thông hiểu
    Xác định thiết diện

    Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng (\alpha) đi qua M, song song với AB và AD. Thiết diện (\alpha) với tứ diện ABCD là hình gì?

    Hướng dẫn:

    Hình vẽ minh họa

    Xác định thiết diện

    (\alpha) // (AB) => Giao tuyến của (\alpha) với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.

    (\alpha) // AD => Giao tuyến của (\alpha) với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.

    Vậy thiết diện là tam giác MNP.

  • Câu 3: Thông hiểu
    Tìm thiết diện

    Cho tứ diện ABCD. Giả sử M thuộc đoạn BC. Một mặt (\alpha) qua M song song với AB và CD. Thiết diện của (\alpha) và hình tứ diện ABCD là hình gì?

    Hướng dẫn:

    Hình vẽ minh họa

    Tìm thiết diện

    (\alpha) //AB => Giao tuyến của (\alpha) với (ABC) là đường thẳng đi qua M, song song với AB và cắt AC tại Q.

    (\alpha) //CD => Giao tuyến của (\alpha) với (BCD) là đường thẳng đi qua M, song song với CD và cắt BD tại N.

    (\alpha) //AB => Giao tuyến của (\alpha) với (ABD) là đường thẳng đi qua N, song song với AB và cắt AD tại P.

    => Thiết diện của hình chóp cắt bởi (\alpha) là tứ giác MNPQ.

    Ta lại có: MN // PQ // CD, MQ // PN // AB.

    Vậy thiết diện là hình bình hành MNPQ.

  • Câu 4: Nhận biết
    Vị trí tương đối giữa đường thẳng và mặt phẳng

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Hướng dẫn:

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

  • Câu 5: Nhận biết
    Tính số mặt phẳng chứa a và song song với b

    Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Hướng dẫn:

    Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.

  • Câu 6: Thông hiểu
    Tìm khẳng định đúng

    Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:

    Hướng dẫn:

    Hình vẽ minh họa

    Tìm khẳng định đúng

    Xét ΔBFD có OO’ là đường trung bình => OO’ // DF

    Mà DF ⊂ (ADF)

    => OO' // (ADF)

  • Câu 7: Thông hiểu
    Tìm số khẳng định sai

    Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?

    (1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.

    (2) Nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.

    (3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.

    Hướng dẫn:

    Phát biểu (1) sai vì nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c song song

    Phát biểu (2) Sai vì nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì b trùng c

    Phát biểu (3) Sai vì có thể xảy ra b trùng c.

  • Câu 8: Thông hiểu
    Tìm thiết diện của (MAB) với hình chóp

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm thiết diện của (MAB) với hình chóp.

    Hướng dẫn:

    Do (MAB) chứa AB // CD, nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB. Đường thẳng này cắt SD tại điểm N.

    Vậy thiết diện của (MAB) với hình chóp là tứ giác ABMN, với N là giao điểm của SD với đường thẳng đi qua M và song song với AB.

  • Câu 9: Vận dụng
    Tìm giao tuyến của MA và SD

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm giao tuyến của MA và SD.

    Hướng dẫn:

    Hình vẽ minh họa:

    Tìm giao tuyến của MA và SD

    Xét hình thang ABCD có I và J lần lượt là trung điểm của AD; BC nên:

    IJ là đường trung bình hình thang ABCD => IJ // AB

    Hai mặt phẳng (GIJ) và (SAB): lần lượt chứa hai đường thẳng song song (là IJ và AB) và có điểm G chung

    => Giao tuyến của chúng là đường thẳng đi qua G và song song với AB.

    Đường thẳng này cắt SA tại M và cắt SB tại N.

  • Câu 10: Vận dụng cao
    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hướng dẫn:

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu
    Mối quan hệ giữa ba đường thẳng

    Cho ba mặt phẳng phân biệt \left( \alpha ight),\;{m{ }}\left( \beta ight),{m{ }}\;\left( \gamma ight)\left( \alpha ight) \cap \left( \beta ight) = {d_1}; \left( \beta ight) \cap \left( \gamma ight) = {d_2}; \left( \alpha ight) \cap \left( \gamma ight) = {d_3}. Khi đó ba đường thẳng {d_1},\;{d_2},\;{d_3}:

    Hướng dẫn:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song. 

  • Câu 12: Nhận biết
    Xác định thiết diện

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
    các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là

    Hướng dẫn:

    Hình vẽ minh họa

     Đường thẳng và mặt phẳng song song

    Ta có thiết diện của S.ABCD cắt bởi
    mặt phẳng (IJK) là ngũ giác

  • Câu 13: Nhận biết
    Xác định thiết diện

    Thiết diện của hình chóp tứ giác (cắt bởi một mặt phẳng) không thể là hình nào dưới đây?

    Hướng dẫn:

    Vì hình chóp tứ giác có tối đa 5 mặt nên thiết diện không thể là lục giác.

  • Câu 14: Nhận biết
    Tìm giao tuyến

    Cho hình chóp S.ABC. Tìm giao tuyến của hai mặt phẳng (SBC)(SAC).

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: (SBC) \cap (SAC) = SC

  • Câu 15: Vận dụng
    Tính độ dài đoạn thẳng G1G2

    Cho tứ diện ABCD có tất cả các cạnh đều bằng a. Gọi G_{1};G_{2} lần lượt là trọng tâm của tam giác BCDACD. Khi đó độ dài đoạn thẳng G_{1}G_{2} bằng:

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi I là trung điểm của CD.

    Trong tam giác IAB ta có:

    \frac{IG_{1}}{IB} = \frac{IG_{2}}{IA} =
\frac{1}{3} (theo tính chất trọng tâm tam giác)

    \Rightarrow \frac{G_{1}G_{2}}{AB} =
\frac{1}{3} \Rightarrow G_{1}G_{2} = \frac{a}{3}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 37 lượt xem
Sắp xếp theo