Đề thi giữa kì 1 Toán 11 sách Chân trời sáng tạo

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 50 câu
  • Điểm số bài kiểm tra: 50 điểm
  • Thời gian làm bài: 90 phút
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
90:00
  • Câu 1: Vận dụng
    Tìm số hạng tổng quát của dãy số

    Cho dãy số \left( u_{n} ight) xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 2020 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.\ ;\left( \forall n \in \mathbb{N}^{*}
ight). Tìm số hạng tổng quát của dãy số?

    Hướng dẫn:

    Ta có:

    u_{n + 1} - u_{n} = n,\forall n \in
\mathbb{N}^{*} suy ra

    u_{2} - u_{1} = 1

    u_{3} - u_{2} = 2

    u_{4} - u_{3} = 3

    u_{n + 1} - u_{n} = n

    Cộng các vễ theo đẳng thức trên ta được

    u_{n + 1} - u_{n} = 1 + 2 + 3 + ... + n
= \frac{n(n + 1)}{2}

    \Leftrightarrow u_{n + 1} = 2020 +
\frac{n(n + 1)}{2};\left( \forall n \in \mathbb{N}^{*}
ight)

  • Câu 2: Thông hiểu
    Tìm khẳng định sai

    Cho tứ diện ABCDG;G' lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi M là trung điểm của CD

    Khi đó \frac{MG}{MB} = \frac{1}{3} =
\frac{MG'}{MA} (vì G;G' lần lượt là trọng tâm của hai tam giác BCDACD)

    Suy ra \left\{ \begin{matrix}\dfrac{GG'}{AB} = \dfrac{1}{3} \\GG'//AB \\\end{matrix} ight.\  \Rightarrow GG' = \frac{1}{3}AB

    Vậy khẳng định sai là GG' =
\frac{2}{3}AB.

    Mặt phẳng (ABG) và tứ diện theo một diện diện là tam giác

    Dễ thấy BG;AG';CD đồng quy tại điểm M.

  • Câu 3: Thông hiểu
    Thực hiện phép tính

    Rút gọn biểu thức C = \cos(7\pi - x) + 3\sin\left( \frac{3\pi}{2} + xight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x ta được:

    Hướng dẫn:

    Ta có:

    C = \cos(7\pi - x) + 3\sin\left(\frac{3\pi}{2} + x ight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x

    C = \cos(\pi - x) - 3\sin\left(\frac{\pi}{2} + x ight) - \sin x + \sin x

    C = - \cos x - 3cosx = -
4cosx

  • Câu 4: Nhận biết
    Tính tổng các giá trị của m

    Biết ba số m;2;m
+ 3 lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?

    Hướng dẫn:

    Để ba số m;2;m + 3 lập thành một cấp số nhân thì m.(m + 3) = 2^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

    Vậy tổng các giá trị của m là S = -
3

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Trên đường tròn lượng giác, cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(k\in\mathbb{ Z} ight) được biểu diễn bởi bao nhiêu điểm?

    Hướng dẫn:

    Xét theo chiều dương với k =
0,1,2,3 ta thấy cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(
k\mathbb{\in Z} ight) được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:

  • Câu 6: Nhận biết
    Chọn khẳng định đúng

    Cho tứ diện ABCD như hình vẽ.

    Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Khẳng định đúng là (MND) \cap (ABC) =
MN

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Vậy \left\{ \begin{matrix}
d//(\alpha) \\
d \subset (\beta) \\
(\alpha) \cap (\beta) = a \\
\end{matrix} ight.\  \Rightarrow d//a

  • Câu 8: Vận dụng
    Tìm tất cả giá trị tham số m

    Tìm tất cả các giá trị của tham số m để phương trình 2m\sin^{2}x + 4\sin x\cos x - 4\cos^{2}x = 0 vô nghiệm?

    Hướng dẫn:

    Ta có:

    2m\sin^{2}x + 4\sin x\cos x -4\cos^{2}x = 0

    \Leftrightarrow m(1 - \cos2x) + 2\sin2x -2(1 + \cos2x) = 0

    \Leftrightarrow 2\sin2x - (m + 2)\cos2x = 2- m
    Phương trình vô nghiệm \Leftrightarrow 4 +(m + 2)^{2} < (2 - m)^{2}

    \Leftrightarrow 4 + m^{2} + 4m + 4 <4 - 4m + m^{2}

    \Leftrightarrow 8m + 4 < 0\Leftrightarrow m < - \frac{1}{2}

  • Câu 9: Thông hiểu
    Xác định mệnh đề đúng

    Cho \frac{\pi}{2}
< x < \pi. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \frac{\pi}{2} < x < \pi
\Leftrightarrow - \pi < - x < - \frac{\pi}{2}

    \Leftrightarrow \frac{\pi}{2} <
\frac{3\pi}{2} - x < \pi

    Do đó điểm cuối của cung có số đo \frac{3\pi}{2} - x thuộc góc phần tư thứ II

    Vậy \sin\left( \frac{3\pi}{2} - x ight)
> 0

  • Câu 10: Thông hiểu
    Tính giá trị biểu thức A

    Thu gọn biểu thức A = \sin(\pi + x) + \cos\left( x + \frac{3\pi}{2}
ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x ight) thu được kết quả là:

    Hướng dẫn:

    Áp dụng công thức về cung liên kết ta có:

    \cos\left( \frac{\pi}{2} + x ight) =
\cos\left\lbrack \frac{\pi}{2} - ( - x) ightbrack = \sin( - x) = -
\sin x

    \sin(\pi - x) = \sin x

    \cos\left( x + \frac{3\pi}{2} ight) =
\cos\left( x + \pi + \frac{\pi}{2} ight) = \cos\left( x +
\frac{\pi}{2} ight)

    = - \cos\left\lbrack \frac{\pi}{2} - ( -
x) ightbrack = - \sin( - x) = \sin x

    \sin(\pi + x) = - \sin x

    Suy ra:

    A = \sin(\pi + x) + \cos\left( x +
\frac{3\pi}{2} ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x
ight)

    A = - \sin x + \sin x + \sin x - \sin x
= 0

  • Câu 11: Nhận biết
    Chọn khẳng định sai

    Khẳng định nào sau đây sai?

    Hướng dẫn:

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:

    TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.

    TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”

    Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.

    Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Hàm số nào dưới đây đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight)?

    Hướng dẫn:

    Ta có:

    x \in \left( 0;\frac{5\pi}{6} ight)
\Rightarrow x - \frac{\pi}{3} \in \left( \frac{\pi}{3};\frac{\pi}{2}
ight) \subset \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Nên hàm số y = \sin\left( x -
\frac{\pi}{3} ight) đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight) .

  • Câu 13: Thông hiểu
    Tìm giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
AB//DC \\
AB \subset (SAB) \\
DC \subset (SCD) \\
S \in (SAB) \cap (SCD) \\
\end{matrix} ight. suy ra giao tuyến của mặt phẳng (SAB)và mặt phẳng (SCD) là đường thẳng đi qua điểm S và song song với AB và DC.

  • Câu 14: Thông hiểu
    Tìm m để phương trình có nghiệm

    Cho phương trình \cos^{2}2x = m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm?

    Hướng dẫn:

    Ta có:

    0 \leq \cos^{2}2x \leq 1 \Leftrightarrow0 \leq m + 1 \leq 1

    \Leftrightarrow - 1 \leq m \leq
0 thì phương trình có nghiệm.

  • Câu 15: Nhận biết
    Chọn đáp án chính xác

    Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?

    Hướng dẫn:

    Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là: - 360^{0}

  • Câu 16: Thông hiểu
    Tìm họ nghiệm phương trình

    Phương trình 2\cos^{2}x - 3\sqrt{3}\sin2x - 4\sin^{2}x = -4 có họ nghiệm là

    Hướng dẫn:

    Ta có:

    \cos x = 0 \Leftrightarrow x =
\frac{\pi}{2} + k\pi

    \Rightarrow \sin^{2}x = 1 là nghiệm của phương trình.

    \cos x eq 0 : Chia 2 vế phương trình cho \cos^{2}x ta được:

    2 - 6\sqrt{3}\tan x - 4\tan^{2}x = -4\left( 1 + \tan^{2}x ight)

    \Leftrightarrow tanx = \frac{1}{\sqrt{3}}
\Leftrightarrow x = \frac{\pi}{6} + k\pi.

  • Câu 17: Thông hiểu
    Chọn kết quả chính xác

    Tìm tập giá trị của hàm số y = 5\sin x - 12\cos x?

    Hướng dẫn:

    Ta có:

    y = 5\sin x - 12\cos x

    =>y = 13\left( \frac{5\sin x - 12\cos x}{13}ight)

    => y = 13\left( \sin\alpha.\sin x -\cos\alpha.\cos x ight)

    y = 13cos(x + \alpha) (với \sin\alpha = \frac{5}{13};\cos\alpha =\frac{12}{13})

    Lại có:

    - 1 \leq \cos(x + \alpha) \leq
1

    \Leftrightarrow - 13 \leq 13cos(x +
\alpha) \leq 13

    \Leftrightarrow - 13 \leq y \leq
13

    Vậy tập giá trị của hàm số là \lbrack -
13;13brack

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB,CD, điểm G là trọng tâm tam giác BCD. Khi đó giao điểm của MG và mặt phẳng (ACD) là:

    Hướng dẫn:

    Hình vẽ minh họa:

    Trong tam giác ABN ta có: \frac{BM}{AB} < \frac{BG}{BN} \Rightarrow P =
MG \cap AN

    Vậy P = MG \cap (ACD)

  • Câu 19: Thông hiểu
    Tìm hàm số chẵn

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Hướng dẫn:

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 20: Thông hiểu
    Chọn khẳng định đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử (SAB) \cap (SCD) = d. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: (SAB) \cap (SCD) = d

    Ta lại có: \left\{ \begin{matrix}
S \in (SAB);S \in (SCD) \\
AB \subset (SAB);CD \subset (SCD) \\
AB//CD \\
\end{matrix} ight. suy ra đường thẳng d đi qua S và song song với AB.

  • Câu 21: Thông hiểu
    Xác định số kết luận đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử G,G' lần lượt là trọng tâm của tam giác SAB;SCD. Cho các khẳng định sau:

    i) GG'//(SBC)

    ii) GG'//(SAD)

    iii) GG'//(SAC)

    iv) GG'//(ABD)

    Hỏi có bao nhiêu khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M,N lần lượt là trung điểm của AB và CD

    Do G,G' lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên \frac{SG}{SM} = \frac{SG'}{SN} = \frac{2}{3}
\Rightarrow GG'//MN

    MN \subset (ABCD) \Rightarrow
GG'//(ABCD)

    Ta có: MN//AD//BC \Rightarrow
GG'//AD//BC

    \left\{ \begin{matrix}
BC \subset (SBC) \\
AD \subset (SAD) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
GG'//(SBC) \\
GG'//(SAD) \\
\end{matrix} ight.

    Vậy có 3 khẳng định đúng.

  • Câu 22: Vận dụng
    Chọn kết quả đúng

    Tính tổng S = 1 + 11 + 111 + ... + \underbrace {1111...11}_n?

    Hướng dẫn:

    Xét dãy số \left( U_{n} ight) là cấp số nhân với u_{1} = 1;q =
10

    \Rightarrow S_{n} = \frac{1}{9}.\left(
10^{n} - 1 ight)

    \Rightarrow S = S_{1} + S_{2} + ... +
S_{n}

    = \sum_{k = 1}^{n}{\frac{1}{9}\left(
10^{n} - 1 ight)} = \frac{1}{9}\left( \sum_{k = 1}^{n}{10^{n} - n}
ight)

    = \frac{1}{9}\left( 10.\frac{10^{n} -
1}{9} - n ight) = \frac{1}{9}\left( \frac{10^{n + 1} - 1}{9} - n
ight)

  • Câu 23: Thông hiểu
    Tính giá trị biểu thức

    Biết \sin\alpha +
\cos\alpha = \frac{5}{4}. Khi đó \sin\alpha.\cos\alpha có giá trị bằng:

    Hướng dẫn:

    Ta có:

    \sin\alpha.cos\alpha

    = \frac{1}{2}\left\lbrack \left(\sin\alpha + \cos\alpha ight)^{2} - \left( \sin^{2}\alpha +\cos^{2}\alpha ight) ightbrack

    = \frac{1}{2}\left\lbrack \left(
\frac{5}{4} ight)^{2} - 1 ightbrack = \frac{9}{32}

  • Câu 24: Nhận biết
    Chọn kết luận đúng

    Chọn công thức đúng trong các công thức cho sau đây?

    Hướng dẫn:

    Công thức đúng là: \sin2\alpha =\sin\alpha.\cos\alpha

  • Câu 25: Nhận biết
    Chọn kết luận đúng

    Cho mặt phẳng (\alpha) có các điểm A \in (\alpha);B otin (\alpha). Đường thẳng t đi qua hai điểm A;B. Khi đó giữa mặt phẳng (\alpha) và đường thẳng t có:

    Hướng dẫn:

    Giữa mặt phẳng (\alpha) và đường thẳng t có đúng một điểm chung.

  • Câu 26: Thông hiểu
    Tính độ dài cung tròn

    Xét đường tròn bán kính 20cm. Cung tròn có số đo 37^{0} có độ dài tương ứng là:

    Hướng dẫn:

    Độ dài cung tròn góc \alpha (với \alpha có đơn vị là độ):

    l = \frac{R\pi\alpha}{180^{0}} =
\frac{20.\pi.37^{0}}{180^{0}} = \frac{37\pi}{9}(cm)

  • Câu 27: Thông hiểu
    Chọn đáp án đúng

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 5;q = \frac{1}{3} . Hỏi \frac{5}{59049} là số hạng thứ mấy của cấp số nhân?

    Hướng dẫn:

    Ta có: u_{n} = u_{1}.q^{n - 1}
\Leftrightarrow \frac{5}{59049} = 5.\left( \frac{1}{3} ight)^{n - 1}
\Rightarrow n = 11

    Vậy số \frac{5}{59049} là số hạng thứ 11 của cấp số nhân.

  • Câu 28: Thông hiểu
    Tìm kết luận sai

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 29: Thông hiểu
    Tìm khẳng định sai

    Cho dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{1}{n^{2} + n}. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Ta có:

    \dfrac{u_{n}}{u_{n + 1}} =\dfrac{\dfrac{1}{n^{2} + n}}{\dfrac{1}{(n + 1)^{2} + (n + 1)}}

    = \frac{n(n - 1)}{n(n + 1)} = \frac{n -
1}{n + 1}

    Với \forall n \in \mathbb{N}^{*},n >
1 ta thấy \frac{n - 1}{n + 1} = 1 -
\frac{2}{n + 1} < 1

    Suy ra dãy số đã cho là dãy số giảm.

  • Câu 30: Nhận biết
    Xác định giả thiết đúng

    Để xác định một mặt phẳng duy nhất cần các yếu tố nào dưới đây?

    Hướng dẫn:

    Đáp án: “ba điểm phân biệt” sai. Trong trường hợp ba điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa ba điểm thẳng hàng đã cho.

    Đáp án: “một điểm và một đường thẳng: sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ta chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

    Đáp án: “bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong bốn tường hợp

  • Câu 31: Thông hiểu
    Tìm các nghiệm của phương trình

    Giải phương trình \tan x - \sqrt{3} = 0 ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:

    Hướng dẫn:

    Ta có:

    \tan x - \sqrt{3} = 0

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi;\left( k\mathbb{\in Z} ight)

    Suy ra:

    Nghiệm âm lớn nhất của phương trình là: x
= \frac{- 2\pi}{3} ứng với k = -
1

    Nghiệm dương nhỏ nhất của phương trình là: x = \frac{\pi}{3} ứng với k = 0

  • Câu 32: Thông hiểu
    Giải phương trình lượng giác

    Phương trình 2\sin x - 1 = 0 có bao nhiêu nghiệm thuộc khoảng ( - \pi;\pi)?

    Hướng dẫn:

    Ta có:

    \sin x = \frac{1}{2} \Leftrightarrow\left\lbrack \begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in ( - \pi;\pi) \Rightarrow x =
\frac{\pi}{6};x = \frac{5\pi}{6}

    Vậy phương trình có hai nghiệm thuộc khoảng ( - \pi;\pi).

  • Câu 33: Nhận biết
    Chọn đáp án chính xác

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 1;q = 2019. Tính u_{2019}?

    Hướng dẫn:

    Ta có:

    u_{n} = u_{1}.q^{n - 1} \Leftrightarrow
u_{2019} = 1.2019^{2018} = 2019^{2018}

  • Câu 34: Thông hiểu
    Xác định giao tuyến hai mặt phẳng

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của ADACG là trọng tâm của tam giác BCD. Khi đó giao tuyến của mặt phẳng (IJG) và mặt phẳng (BCD) là đường thẳng đi qua điểm

    Hướng dẫn:

    Hình vẽ minh họa

    Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.

    Gọi d = (GIJ) \cap (BCD)

    Ta có: \left\{ \begin{matrix}
G \in (GIJ);G \in (BCD) \\
IJ \subset (GIJ);CD \subset (BCD) \\
IJ//CD \\
\end{matrix} ight.

    Suy ra d đi qua G và song song với CD,.

  • Câu 35: Nhận biết
    Chọn khẳng định đúng

    Để kết luận đường thẳng a song song với đường thẳng b ta cần giả thiết nào dưới đây?

    Hướng dẫn:

    Ta có tính chất:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy \left\{ \begin{matrix}
a//(\alpha);a//(\beta) \\
(\alpha) \cap (\beta) = b \\
\end{matrix} ight.\  \Rightarrow a//b

  • Câu 36: Vận dụng cao
    Tính giá trị biểu thức

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Hướng dẫn:

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 37: Thông hiểu
    Chọn khẳng định sai

    Cho tứ diện ABCD. Lấy M,N,P,Q lần lượt là trung điểm của các cạnh AB,AC,BD,CD. Khẳng định nào dưới đây là khẳng định sai?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: MN // PQ (vì cùng song song với BC)

    Ta có: MN = PQ = \frac{1}{2}BC (vì MN//PQ lần lượt là các đường trung bình của ABC,DBC.

    Từ hai kết quả trên ta suy ra tứ giác MNPQ là hình bình hành nên MQ, PN không thể chéo nhau.

  • Câu 38: Nhận biết
    Tính giá trị biểu thức

    Giá trị của \sin\left( - \frac{25\pi}{4} ight) là:

    Hướng dẫn:

    Ta có:

    \sin\left( - \frac{25\pi}{4} ight) =
\sin\left( - \frac{\pi}{4} - 6\pi ight) = \sin\left( - \frac{\pi}{4}
ight) = - \frac{\sqrt{2}}{2}

  • Câu 39: Thông hiểu
    Xác định thiết diện

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của BCBD, lấy điểm E \in AD;E eq A;E eq D. Thiết diện cắt bởi mặt phẳng (IJE) với tứ diện ABCD là:

    Hướng dẫn:

    Hình vẽ minh họa

    Vì I và J là trung điểm của BC và BD nên IJ//CD (1)

    \left\{ \begin{matrix}
IJ \subset (IJE) \\
CD \subset (ACD) \\
E \in (IJE) \cap (ACD) \\
\end{matrix} ight. nên giao tuyến của hai mặt phẳng (ACD)(IJE) là đường thẳng d qua E và song song với CD.

    Gọi F = d \cap AC ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng (IJE).

    Vì EF//IJ nên IJEF là hình thang.

  • Câu 40: Thông hiểu
    Chọn đáp án đúng

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hướng dẫn:

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 41: Nhận biết
    Chọn đáp án đúng

    Dãy số nào là dãy số tăng?

    Hướng dẫn:

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 42: Nhận biết
    Chọn đáp án đúng

    Xác định bốn số hạng đầu của một dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = sin^{2}\left( \frac{\pi
n}{4} ight) + \cos\left( \frac{2\pi n}{3} ight) với \forall n \in \mathbb{N}^{*}?

    Hướng dẫn:

    Ta có:

    u_{1} = \sin^{2}\left( \frac{\pi}{4}ight) + \cos\left( \frac{2\pi}{3} ight) = 0

    u_{2} = \sin^{2}\left( \frac{2\pi}{4}ight) + \cos\left( \frac{4\pi}{3} ight) = \frac{1}{2}

    u_{3} = \sin^{2}\left( \frac{3\pi}{4}ight) + \cos\left( \frac{6\pi}{3} ight) = \frac{3}{2}

    u_{4} = \sin^{2}\left( \frac{4\pi}{4}ight) + \cos\left( \frac{8\pi}{3} ight) = \frac{- 1}{2}

  • Câu 43: Vận dụng cao
    Tính giá trị biểu thức

    Cho cấp số nhân \left( u_{n} ight) có các số hạng đều dương và \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} + \ldots + u_{n} = 2020 \\\dfrac{1}{u_{1}} + \dfrac{1}{u_{2}} + \dfrac{1}{u_{3}} + \ldots +\dfrac{1}{u_{n}} = 2021 \\\end{matrix} ight. Giá trị của P = u_{1} \cdot u_{2} \cdot u_{3}\ldots\ldots
u_{n} là:

    Hướng dẫn:

    Ta có P = u_{1} \cdot \left( u_{1} \cdot q ight)\ldots..\left( u_{1} \cdot q^{n - 1} ight)

    = u_{1}^{n} \cdot q^{1 + 2 + 3 + \ldots + (n - 1)}

    = u_{1}^{n} \cdot q^{\frac{n(n -1)}{2}} = \left( u_{1} \cdot q^{\frac{n - 1}{2}}ight)^{n}

    Theo giả thiết, ta có:

    A = u_{1} + u_{2} +
u_{3} + \ldots + u_{n} = u_{1} \cdot \frac{q^{n} - 1}{q -
1}
    B = \frac{1}{u_{1}} + \frac{1}{u_{2}} +
\frac{1}{u_{3}} + \ldots + \frac{1}{u_{n}}

    = \frac{1}{u_{1}} \cdot \left( 1 +
\frac{1}{q} + \frac{1}{q^{2}} + \ldots + \frac{1}{q^{n - 1}}
ight)

    = \dfrac{1}{u_{1}} \cdot \dfrac{1 -\dfrac{1}{q^{n}}}{1 - \dfrac{1}{q}} = \dfrac{1}{u_{1}} \cdot \dfrac{q^{n} -1}{q - 1} \cdot \dfrac{1}{q^{n - 1}}.
    Suy ra \frac{A}{B} = u_{1}^{2} \cdot q^{n -
1} = \left( u_{1} \cdot q^{\frac{n - 1}{2}} ight)^{2}. Vậy P = \sqrt{\left( \frac{A}{B} ight)^{n}} =
\sqrt{\left( \frac{2020}{2021} ight)^{n}}.

  • Câu 44: Thông hiểu
    Giải phương trình lượng giác

    Tìm tập nghiệm của phương trình \left( \sin x + 1 ight).\left( \sin x - \sqrt{2}
ight) = 0?

    Hướng dẫn:

    Ta có:

    \left( \sin x + 1 ight).\left( \sin x
- \sqrt{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\sin x + 1 = 0 \\
\sin x - \sqrt{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\sin x = - 1 \\
\sin x = \sqrt{2}(L) \\
\end{matrix} ight.

    \Leftrightarrow \sin x = - 1
\Leftrightarrow x = - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy phương trình có tập nghiệm là: S =
\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 45: Thông hiểu
    Tính giá trị biểu thức T

    Ta có: \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4} =\frac{1}{2}\left( c - \frac{\sqrt{a}}{b} ight) với a,b,c\in \mathbb{N},a \leq 5. Xác định giá trị của biểu thức T = a - b +
c?

    Hướng dẫn:

    Ta có:

    \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4}

    = \frac{1}{2}.\left( \sin\frac{90^{0} -
270^{0}}{4} + \sin\frac{90^{0} + 270^{0}}{4} ight)

    = \frac{1}{2}.\left\lbrack \sin\left( -
45^{0} ight) + \sin\left( 90^{0} ight) ightbrack

    = \frac{1}{2}.\left( -
\frac{\sqrt{2}}{2} + 1 ight) = \frac{1}{2}\left( 1 -
\frac{\sqrt{2}}{2} ight)

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 1

  • Câu 46: Vận dụng
    Chọn đáp án đúng

    Tại thủ đô A số giờ có ánh sáng mặt trời trong ngày thứ x (ở đây x là số ngày tính từ ngày 1 tháng giêng) của một năm không nhận được cho bởi công thức:

    T(x) = 12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) với x\mathbb{\in Z};0 < x < 365.

    Hỏi vào ngày nào trong năm thì thủ đô A có khoảng 10 giờ ánh sáng mặt trời?

    Hướng dẫn:

    Thủ đô A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu

    12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) = 10

    \Leftrightarrow \sin\left( \frac{2\pi
x}{365} - \frac{32}{73} ight) = \frac{- 200}{283}

    \Leftrightarrow \left\lbrack\begin{matrix}\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx - 0,78 + k2\pi \\\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx 3,93 + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \approx 34,49 + 365\pi \\
x \approx 308,30 + 365\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x\mathbb{\in Z};0 < x <
365 nên k = 0 suy ra \left\lbrack \begin{matrix}
x \approx 34,69 \\
x \approx 308,30 \\
\end{matrix} ight..

    Như vậy vào khoảng ngày thứ 34 của năm tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.

  • Câu 47: Vận dụng
    Tìm khẳng định đúng

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} thỏa mãn biểu thức \sin\frac{\widehat{A}}{2}.cos^{3}\frac{\widehat{B}}{2}
- \sin\frac{\widehat{B}}{2}.cos^{3}\frac{\widehat{A}}{2} = 0. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \sin\frac{\widehat{A}}{2}.\cos^{3}\frac{\widehat{B}}{2}- \sin\frac{\widehat{B}}{2}.\cos^{3}\frac{\widehat{A}}{2} =0

    \Leftrightarrow\dfrac{\sin\dfrac{\widehat{A}}{2}}{\cos^{3}\dfrac{\widehat{A}}{2}} =\dfrac{\sin\dfrac{\widehat{B}}{2}}{\cos^{3}\dfrac{\widehat{B}}{2}}

    \Leftrightarrow\tan\frac{\widehat{A}}{2}\left( 1 + \tan^{2}\frac{\widehat{A}}{2} ight)= \tan\frac{\widehat{B}}{2}.\left( 1 + \tan^{2}\frac{\widehat{B}}{2}ight)

    \Leftrightarrow
\tan\frac{\widehat{A}}{2} = \tan\frac{\widehat{B}}{2} \Leftrightarrow
\frac{\widehat{A}}{2} = \frac{\widehat{B}}{2} \Leftrightarrow
\widehat{A} = \widehat{B}

    Vậy tam giác ABC cân.

  • Câu 48: Thông hiểu
    Biểu diễn nghiệm của phương trình

    Cho vòng tròn lượng giác được kí hiệu như sau:

    Điểm nào biểu diễn nghiệm của phương trình 2sinx - 1 = 0?

    Hướng dẫn:

    Ta có:

    2sinx - 1 = 0 \Leftrightarrow \sin x =
\frac{1}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.

  • Câu 49: Thông hiểu
    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của a để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng?

    Hướng dẫn:

    Để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng thì a^{4} + 3a^{2}
- 9 = 2a^{2}

    Đặt t = a^{2};(t \geq 0) phương trình trở thành

    t^{2} + t - 9 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{- 1 + \sqrt{37}}{2} \\t = \dfrac{- 1 - \sqrt{37}}{2}(l) \\\end{matrix} ight.

    Với t = \frac{- 1 + \sqrt{37}}{2}
\Rightarrow a = \pm \sqrt{\frac{- 1 + \sqrt{37}}{2}}

    Do a\mathbb{\in Z} vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.

  • Câu 50: Thông hiểu
    Tính công sai và tổng 10 số hạng đầu

    Cho một cấp số cộng \left( u_{n} ight)u_{1} = 2;u_{8} = 16. Tìm d;S_{10}?

    Hướng dẫn:

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{8} = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1} + 7d = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
d = 2 \\
\end{matrix} ight.

    \Rightarrow S_{10} = \frac{\left\lbrack
2u_{1} + 9d ightbrack.n}{2} = 110

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (56%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (4%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 8 lượt xem
Sắp xếp theo