Cho dãy số xác định bởi công thức
. Tìm số hạng tổng quát của dãy số?
Ta có:
suy ra
…
Cộng các vễ theo đẳng thức trên ta được
Cho dãy số xác định bởi công thức
. Tìm số hạng tổng quát của dãy số?
Ta có:
suy ra
…
Cộng các vễ theo đẳng thức trên ta được
Cho tứ diện có
lần lượt là trọng tâm hai tam giác
và
. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Gọi là trung điểm của
Khi đó (vì
lần lượt là trọng tâm của hai tam giác
và
)
Suy ra
Vậy khẳng định sai là .
Mặt phẳng và tứ diện theo một diện diện là tam giác
Dễ thấy đồng quy tại điểm M.
Rút gọn biểu thức ta được:
Ta có:
Biết ba số lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Trên đường tròn lượng giác, cung có số đo được biểu diễn bởi bao nhiêu điểm?
Xét theo chiều dương với ta thấy cung có số đo
được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:
Cho tứ diện như hình vẽ.
Khẳng định nào sau đây đúng?
Khẳng định đúng là
Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Vậy
Tìm tất cả các giá trị của tham số để phương trình
vô nghiệm?
Ta có:
Phương trình vô nghiệm
Cho . Mệnh đề nào sau đây đúng?
Ta có:
Do đó điểm cuối của cung có số đo thuộc góc phần tư thứ
Vậy
Thu gọn biểu thức thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Khẳng định nào sau đây sai?
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:
TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.
TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”
Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.
Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.
Hàm số nào dưới đây đồng biến trên khoảng ?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Cho hình chóp có đáy
là hình bình hành tâm
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa:
Ta có: suy ra giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm S và song song với AB và DC.
Cho phương trình với
là tham số. Tìm tất cả các giá trị của tham số
để phương trình đã cho có nghiệm?
Ta có:
thì phương trình có nghiệm.
Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?
Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là:
Phương trình có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Tìm tập giá trị của hàm số ?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Cho tứ diện . Gọi
lần lượt là trung điểm của
, điểm
là trọng tâm tam giác
. Khi đó giao điểm của
và mặt phẳng
là:
Hình vẽ minh họa:
Trong tam giác ta có:
Vậy
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Cho hình chóp có đáy
là hình bình hành. Giả sử
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Ta lại có: suy ra đường thẳng d đi qua S và song song với AB.
Cho hình chóp có đáy
là hình bình hành. Giả sử
lần lượt là trọng tâm của tam giác
. Cho các khẳng định sau:
i)
ii)
iii)
iv)
Hỏi có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Gọi lần lượt là trung điểm của AB và CD
Do lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên
Mà
Ta có:
Mà
Vậy có 3 khẳng định đúng.
Tính tổng ?
Xét dãy số là cấp số nhân với
Biết . Khi đó
có giá trị bằng:
Ta có:
Chọn công thức đúng trong các công thức cho sau đây?
Công thức đúng là:
Cho mặt phẳng có các điểm
. Đường thẳng
đi qua hai điểm
. Khi đó giữa mặt phẳng
và đường thẳng
có:
Giữa mặt phẳng và đường thẳng
có đúng một điểm chung.
Xét đường tròn bán kính . Cung tròn có số đo
có độ dài tương ứng là:
Độ dài cung tròn góc (với
có đơn vị là độ):
Cho một cấp số nhân có
. Hỏi
là số hạng thứ mấy của cấp số nhân?
Ta có:
Vậy số là số hạng thứ 11 của cấp số nhân.
Cho tứ diện có
lần lượt là trọng tâm hai tam giác
và
. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có: lần lượt là trọng tâm hai tam giác
và
Suy ra BE, AF cắt nhau tại điểm Q.
Vậy đồng quy.
Lại có:
Từ đó suy ra và
.
Cho dãy số xác định bởi công thức
. Khẳng định nào sau đây sai?
Ta có:
Với ta thấy
Suy ra dãy số đã cho là dãy số giảm.
Để xác định một mặt phẳng duy nhất cần các yếu tố nào dưới đây?
Đáp án: “ba điểm phân biệt” sai. Trong trường hợp ba điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa ba điểm thẳng hàng đã cho.
Đáp án: “một điểm và một đường thẳng: sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ta chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
Đáp án: “bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong bốn tường hợp
Giải phương trình ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Phương trình có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Mà
Vậy phương trình có hai nghiệm thuộc khoảng .
Cho một cấp số nhân có
. Tính
?
Ta có:
Cho tứ diện . Lấy
lần lượt là trung điểm của
và
và
là trọng tâm của tam giác
. Khi đó giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm
Hình vẽ minh họa
Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.
Gọi
Ta có:
Suy ra d đi qua G và song song với CD,.
Để kết luận đường thẳng song song với đường thẳng
ta cần giả thiết nào dưới đây?
Ta có tính chất:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy
Biết rằng phương trình có nghiệm dạng
với
và
. Tính
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Cho tứ diện . Lấy
lần lượt là trung điểm của các cạnh
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có: MN // PQ (vì cùng song song với BC)
Ta có: (vì
lần lượt là các đường trung bình của
.
Từ hai kết quả trên ta suy ra tứ giác MNPQ là hình bình hành nên MQ, PN không thể chéo nhau.
Giá trị của là:
Ta có:
Cho tứ diện . Lấy
lần lượt là trung điểm của
và
, lấy điểm
. Thiết diện cắt bởi mặt phẳng
với tứ diện
là:
Hình vẽ minh họa
Vì I và J là trung điểm của BC và BD nên IJ//CD (1)
nên giao tuyến của hai mặt phẳng
và
là đường thẳng d qua E và song song với CD.
Gọi ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng
.
Vì EF//IJ nên IJEF là hình thang.
Tìm tập xác định của hàm số
?
Hàm số xác định khi:
Vậy
Dãy số nào là dãy số tăng?
Xét ta có:
Vậy là dãy số tăng.
Xác định bốn số hạng đầu của một dãy số xác định bởi công thức
với
?
Ta có:
Cho cấp số nhân có các số hạng đều dương và
Giá trị của
là:
Ta có
Theo giả thiết, ta có:
Và
.
Suy ra . Vậy
.
Tìm tập nghiệm của phương trình ?
Ta có:
Vậy phương trình có tập nghiệm là:
Ta có: với
. Xác định giá trị của biểu thức
?
Ta có:
Tại thủ đô A số giờ có ánh sáng mặt trời trong ngày thứ (ở đây
là số ngày tính từ ngày 1 tháng giêng) của một năm không nhận được cho bởi công thức:
với
.
Hỏi vào ngày nào trong năm thì thủ đô A có khoảng 10 giờ ánh sáng mặt trời?
Thủ đô A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu
Vì nên
suy ra
.
Như vậy vào khoảng ngày thứ 34 của năm tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.
Cho tam giác có các góc
thỏa mãn biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Vậy tam giác cân.
Cho vòng tròn lượng giác được kí hiệu như sau:
Điểm nào biểu diễn nghiệm của phương trình ?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của để ba số
lập thành một cấp số cộng?
Để ba số lập thành một cấp số cộng thì
Đặt phương trình trở thành
Với
Do vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.
Cho một cấp số cộng có
. Tìm
?
Theo bài ra ta có: