Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Cho tứ diện ABCD có AB = AC, BD = CD. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:
Gọi M là trung điểm của BC.
Do tam giác ABC và tam giác BCD lần lượt là tam giác cân tại A và tại D
=> BC ⊥ MA, BC ⊥ MD
=> BC ⊥ (ADM)
=> BC ⊥ AD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?
Hình vẽ minh họa:
Ta có: O và I lần lượt là trung điểm của AC và SC
=> OI là đường trung bình của tam giác SAC
=> OI // SA
Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)
Ta có: ABCD là hình chữ nhật => BC ⊥ AB
Mà SA ⊥ BC => BC ⊥ SB
Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD
Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.
Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).
Hình vẽ minh họa:
Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:
Gọi O là giao điểm của AC và BD ta có:
Ta có: => Hình chiếu của SD trên mặt phẳng (SAC) là SO.
=>
=>
Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?
Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa:
Ta có:
=> ABCD là hình chữ nhật, từ đó ta suy ra
AC = BD
AB ⊥ (SAD)
BC ⊥ AB
Đáp án SO ⊥ (ABCD) sai
Nếu SO ⊥ (ABCD) thì điều này vô lí
Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”
Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?
Hình vẽ minh họa:
Vì HA = HB, tam giác ABC cân => CH ⊥ AB
Ta có: SA ⊥ (ABC) => SA ⊥ CH
Mà CH ⊥ AB => CH ⊥ (SAB)
Mặt khác AK thuộc mặt phẳng (SAB
=> CH ⊥ SA, CH ⊥ SB, CH ⊥ AK
Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có: ABCD là hình thoi =>AB = AD mà nên tam giác ABD là tam giác đều (*)
Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)
Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.
Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Vì AH ⊥ (BCD) => AH ⊥ CD (*)
Do H là trực tâm tam giác BCD => BH ⊥ CD (**)
Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB
Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có: ABCD là hình thoi =>AB = AD mà nên tam giác ABD là tam giác đều (*)
Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)
Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.
Cho hình chóp S.ABCD có đáy ABCD là lục giác đều và AB = BC = CD = a. Mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, . Tính sin của góc tạo bởi SC và mặt phẳng (SAD).
Hình vẽ minh họa:
Gọi I là giao điểm của AC và BD
Ta có:
Ta có góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc SCI
=>
Xét tam giác BCD có:
Vì BC // AD =>
Xét tam giác SIC vuông tại I ta có:
Gọi O là trung điểm của AD
Xét tam giác AID cân tại I với trung tuyến IO ta có:
Dựng HI vuông góc với SO tại H =>
Ta có:
Gọi K là hình chiếu vuông goc của C trên mặt phẳng (SAD)
=> SK là hình chiếu vuông góc của CK trên mặt phẳng (SAD) và
=> Góc giữa đường thẳng SC và mặt phẳng (SAD) là
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA
=>
Xét tam giác SAB vuông ta có: