Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?
Hình vẽ minh họa:
Vì HA = HB, tam giác ABC cân => CH ⊥ AB
Ta có: SA ⊥ (ABC) => SA ⊥ CH
Mà CH ⊥ AB => CH ⊥ (SAB)
Mặt khác AK thuộc mặt phẳng (SAB
=> CH ⊥ SA, CH ⊥ SB, CH ⊥ AK
Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.
Cho tứ diện ABCD có AB = AC, BD = CD. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:
Gọi M là trung điểm của BC.
Do tam giác ABC và tam giác BCD lần lượt là tam giác cân tại A và tại D
=> BC ⊥ MA, BC ⊥ MD
=> BC ⊥ (ADM)
=> BC ⊥ AD
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có: ABCD là hình thoi =>AB = AD mà nên tam giác ABD là tam giác đều (*)
Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)
Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.
Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Vì AH ⊥ (BCD) => AH ⊥ CD (*)
Do H là trực tâm tam giác BCD => BH ⊥ CD (**)
Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB
Cho hình chóp S.ABCD có đáy ABCD là lục giác đều và AB = BC = CD = a. Mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, . Tính sin của góc tạo bởi SC và mặt phẳng (SAD).
Hình vẽ minh họa:
Gọi I là giao điểm của AC và BD
Ta có:
Ta có góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc SCI
=>
Xét tam giác BCD có:
Vì BC // AD =>
Xét tam giác SIC vuông tại I ta có:
Gọi O là trung điểm của AD
Xét tam giác AID cân tại I với trung tuyến IO ta có:
Dựng HI vuông góc với SO tại H =>
Ta có:
Gọi K là hình chiếu vuông goc của C trên mặt phẳng (SAD)
=> SK là hình chiếu vuông góc của CK trên mặt phẳng (SAD) và
=> Góc giữa đường thẳng SC và mặt phẳng (SAD) là
Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?
Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).
Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có: ABCD là hình thoi =>AB = AD mà nên tam giác ABD là tam giác đều (*)
Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)
Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).
Hình vẽ minh họa:
Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:
Gọi O là giao điểm của AC và BD ta có:
Ta có: => Hình chiếu của SD trên mặt phẳng (SAC) là SO.
=>
=>
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?
Hình vẽ minh họa:
Ta có: O và I lần lượt là trung điểm của AC và SC
=> OI là đường trung bình của tam giác SAC
=> OI // SA
Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)
Ta có: ABCD là hình chữ nhật => BC ⊥ AB
Mà SA ⊥ BC => BC ⊥ SB
Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD
Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.
Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa:
Ta có:
=> ABCD là hình chữ nhật, từ đó ta suy ra
AC = BD
AB ⊥ (SAD)
BC ⊥ AB
Đáp án SO ⊥ (ABCD) sai
Nếu SO ⊥ (ABCD) thì điều này vô lí
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA
=>
Xét tam giác SAB vuông ta có:
Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”
Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.