Luyện tập Biến cố hợp và quy tắc cộng xác suất CTST

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính xác suất của biến cố H

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Hướng dẫn:

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 2: Thông hiểu
    Điền đáp án vào ô trống

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    TH1: A thuộc bài, B không thuộc bài, C thuộc bài có xác suất là:

    P_{1} = 0,9.(1 - 0,7).0,8 =
0,216

    TH2: A không thuộc bài, B thuộc bài, C thuộc bài có xác suất là:

    P_{2} = (1 - 0,9).0,7.0,8 =
0,056

    TH2: A thuộc bài, B thuộc bài, C không thuộc bài có xác suất là:

    P_{3} = 0,9.0,7.(1 - 0,8) =
0,126

    Vậy xác suất cần tìm là: P = 0,216 +
0,056 + 0,126 = 0,398

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi C = \left\{
(1,1,S);(2,2,S);(3,3,S);(4,4,S);(5,5,S);(6,6,S) ight\} là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố C?

    Hướng dẫn:

    Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.

  • Câu 4: Vận dụng cao
    Tính số tam giác tù được tạo thành

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Hướng dẫn:

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 5: Vận dụng
    Xác định mô tả chính xác của biến cố

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?

    Hướng dẫn:

    Ta có: \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{i} \cap M_{j} \cap
\overline{M_{k}} \cap \overline{M_{m}} với i;j;k \in \left\{ 1;2;3;4 ight\} và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.

  • Câu 6: Vận dụng
    Tính xác suất P

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là \frac{1}{10};\frac{1}{10};\frac{1}{20}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Hướng dẫn:

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.

    Ta có:

    Q = (A \cap B) \cup (C)

    Suy ra P(Q) = P(AB) + P(C) -
P(ABC)

    P(Q) = P(A).P(B) + P(C) -
P(A).P(B).P(C)

    = 0,1.0,1 + 0,05 - 0,1.0,1.0,05 =
0,0595

  • Câu 7: Thông hiểu
    Tính xác suất của biến cố

    Trong một bể cá cảnh có chứa 40 con gồm 10 cá đỏ, 15 cá vàng; 8 cá đen, còn lại là cá bạc. Chọn ngẫu nhiên 6 con cá trong bể. Tính xác suất để lấy được 6 con cá có cùng màu?

    Hướng dẫn:

    Gọi A là biến cố lấy được 6 con cá đỏ \Rightarrow P(A) =
\frac{C_{10}^{6}}{C_{40}^{6}}

    B là biến cố lấy được 6 con cá vàng \Rightarrow P(B) =
\frac{C_{15}^{6}}{C_{40}^{6}}

    C là biến cố lấy được 6 con cá đen \Rightarrow P(C) =
\frac{C_{8}^{6}}{C_{40}^{6}}

    D là biến cố lấy được 6 con cá bạc \Rightarrow P(D) =
\frac{C_{7}^{6}}{C_{40}^{6}}

    E là biến cố lấy được 6 con cá cùng màu

    \Rightarrow E = A \cup B \cup C \cup
D

    \Rightarrow P(E) = P(A) + P(B) + P(C) +
P(D)

    \Rightarrow P(E) =
\frac{C_{10}^{6}}{C_{40}^{6}} + \frac{C_{15}^{6}}{C_{40}^{6}} +
\frac{C_{8}^{6}}{C_{40}^{6}} + \frac{C_{7}^{6}}{C_{40}^{6}} \approx
1,37.10^{- 3}

  • Câu 8: Nhận biết
    Mô tả biến cố hợp

    Gieo hai lần liên tiếp một đồng xu. Gọi M là biến cố có ít nhất một lần mặt sấp xuất hiện, N là biến cố kết quả hai lần gieo giống nhau. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có:

    M = \left\{ SS;SN;NS
ight\}

    N = \left\{ SS;NN ight\}

    \Rightarrow M \cup N = \left\{
SS;SN;NS;NN ight\}

  • Câu 9: Thông hiểu
    Chọn mô tả biến cố đúng

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Hướng dẫn:

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 10: Nhận biết
    Xác định số phần tử không gian mẫu

    Lấy ngẫu nhiên 3 thẻ trong một hộp chứa 10 thẻ được đánh số từ 1 đến 10. Giả sử C là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tính số phần tử của biến cố C?

    Hướng dẫn:

    Các phần tử của biến cố là:

    C = \left\{
(1,2,3);(1,2,4);(1,2,5);(1,3,4) ight\}

    Vậy n(\Omega) = 4

  • Câu 11: Nhận biết
    Tính xác suất của biến cố hợp

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Hướng dẫn:

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 12: Thông hiểu
    Xác định số kết quả thuận lợi cho biến cố W

    Khu vực chờ nhận phần thưởng có 6 chiếc ghế được kê thành 1 hàng ngang. Xếp ngẫu nhiên 6 học sinh gồm 3 học sinh lớp 10, 2 học sinh lớp 11 và 1 học sinh lớp 12 ngồi vào chiếc ghế kê thành một hàng ngang sao cho mỗi ghế có đúng 1 học sinh ngồi. Hãy xác định số kết quả thuận lợi cho biến cố W: “Xếp học sinh lớp 12 chỉ ngồi cạnh học sinh lớp 11”?

    Hướng dẫn:

    Xét các trường hợp:

    TH1: Học sinh lớp 12 ngồi đầu dãy:

    Chọn vị trí cho học sinh lớp 12 có 2 cách

    Chọn 1 vị trí cho học sinh lớp 11 ngồi cạnh học sinh lớp 12 có 2 cách

    Hoán vị các học sinh còn lại cho nhau có 4! Cách.

    Trường hợp này được: 2.2.4! = 96 cách.

    TH2: Học sinh lớp 12 ngồi giữa hai học sinh lớp 11, ta gộp thành một nhóm, khi đó:

    Hoán vị 4 phần tử gồm 3 học sinh lớp 10 và nhóm gồm học sinh lớp 11 và lớp 12 có 4! Cách.

    Hoán vị hai học sinh lớp 11 cho nhau có 2! Cách

    Trường hợp này được 4!.2! = 48 cách

    Như vậy số cách sắp xếp là 48 + 96 = 144

    \Rightarrow n(W) = 144

  • Câu 13: Thông hiểu
    Tính xác suất của biến cố

    Trong một bể cá cảnh có chứa 40 con gồm 10 cá đỏ, 15 cá vàng; 8 cá đen, còn lại là cá bạc. Chọn ngẫu nhiên 6 con cá trong bể. Tính xác suất để lấy được 6 con cá có cùng màu?

    Hướng dẫn:

    Gọi A là biến cố lấy được 6 con cá đỏ \Rightarrow P(A) =
\frac{C_{10}^{6}}{C_{40}^{6}}

    B là biến cố lấy được 6 con cá vàng \Rightarrow P(B) =
\frac{C_{15}^{6}}{C_{40}^{6}}

    C là biến cố lấy được 6 con cá đen \Rightarrow P(C) =
\frac{C_{8}^{6}}{C_{40}^{6}}

    D là biến cố lấy được 6 con cá bạc \Rightarrow P(D) =
\frac{C_{7}^{6}}{C_{40}^{6}}

    E là biến cố lấy được 6 con cá cùng màu

    \Rightarrow E = A \cup B \cup C \cup
D

    \Rightarrow P(E) = P(A) + P(B) + P(C) +
P(D)

    \Rightarrow P(E) =
\frac{C_{10}^{6}}{C_{40}^{6}} + \frac{C_{15}^{6}}{C_{40}^{6}} +
\frac{C_{8}^{6}}{C_{40}^{6}} + \frac{C_{7}^{6}}{C_{40}^{6}} \approx
1,37.10^{- 3}

  • Câu 14: Nhận biết
    Xác định khẳng định sai

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hướng dẫn:

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 15: Thông hiểu
    Xác định số phần tử của biến cố

    Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?

    Hướng dẫn:

    Số cách chọn 6 học sinh bất kì từ 15 học sinh là C_{15}^{6} = 5005

    Số cách chọn 6 học sinh chỉ có khối 12 là: C_{6}^{6} = 1

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là: C_{9}^{6} = 84

    Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là: C_{11}^{6} - C_{6}^{6} = 461

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là: C_{10}^{6} - C_{6}^{6} = 209

    Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là

    5005 - 1 - 84 - 461 - 209 =
4250 cách

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 5 lượt xem
Sắp xếp theo