Xác định mệnh đề đúng trong các mệnh đề sau.
Khẳng định đúng là: “Nếu hai mặt phẳng và
song song với nhau thì mọi đường thẳng nằm trong
đều song song với
.”.
Xác định mệnh đề đúng trong các mệnh đề sau.
Khẳng định đúng là: “Nếu hai mặt phẳng và
song song với nhau thì mọi đường thẳng nằm trong
đều song song với
.”.
Cho hình chóp . Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
mà
cắt
nên khẳng định
sai.
cắt
tại
nên khẳng định
sai.
cắt
tại trung điểm của
nên khẳng định
sai.
Cho hình lăng trụ có đáy
và
là hình bình hành. Lấy trung điểm của các cạnh
lần lượt là các điểm
. Xét các khẳng định sau:
a) cắt
.
b) cắt
tại trung điểm của
.
c) .
Số khẳng định đúng là:
Hình vẽ minh họa
Mặt phẳng cắt
tại trung điểm của
.
Từ đó thấy rằng ba khẳng định trong đề bài đều đúng.
Cho hình chóp có đáy
là hình bình hành. Lấy
, mặt phẳng
đi qua
và song song với mặt phẳng
. Khi đó các giao tuyến của mặt phẳng
với các mặt của
là hình gì?
Hình vẽ minh họa
Giao tuyến của với
là
.
Giao tuyến của với
là
.
Từ đó suy ra các giao tuyến của mặt phẳng với các mặt của
là hình thang MNPQ.
Cho hình hộp . Lấy
sao cho
và
. Mặt phẳng
chứa đường thẳng
và song song với
. Xác định các giao tuyến của
với các mặt của hình hộp. Cho biết hình tạo bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa
Giao tuyến của với mặt phẳng (ABCD) là đường thẳng qua M và song song với AC, đường thẳng này cắt CD tại P là trung điểm CD.
Giao tuyến của với mặt phẳng (BCC’B’) là đường thẳng qua N và song song với B’C, đường thẳng này cắt B’C’ tại E là trung điểm B’C’.
Giao tuyến của (α) với mặt phẳng (A’B’C’D’) là đường thẳng qua E và song song với A’C’, đường thẳng này cắt A’B’ tại F là trung điểm A’B’.
Giao tuyến của (α) với mặt phẳng (ABB’A’) là đường thẳng qua F và song song với AB’, đường thẳng này cắt AA’ tại G là trung điểm AA’.
=> Hình lục giác MPNEFG là hình tạo bởi các giao tuyến của với các mặt của hình hộp.
Cho hình lăng trụ . Trọng tâm các tam giác
lần lượt là
. Tìm mặt phẳng song song với mặt phẳng
.
Theo bài ra ta có:
Các điểm lần lượt là trọng tâm các tam giác
.
.
Chứng minh tương tự
Cho hình lập phương cạnh bằng
. Lấy các điểm
sao cho
. Khi giá trị
thay đổi, đường thẳng
luôn song song với mặt phẳng cố định nào sau đây?
Hình vẽ minh họa
Áp dụng định lí Ta – lét đảo cho và
. Từ tỉ lệ
Ta suy ra cùng song song với một mặt phẳng
nào đó.
Ta chọn mặt phẳng chứa
và song song với
.
Mặt phẳng chính là mặt phẳng
và là mặt phẳng cố định.
Hay
Chọn khẳng định đúng trong các khẳng định sau đây.
Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều.
Cho tứ diện . Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Cho hình hộp , gọi
là trung điểm của
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp.
Hình vẽ minh họa
Ta có:
Suy ra giao tuyến của và
là đường thẳng
qua
song song với
;
.
Vì nên hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp
là hình thang
.
Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Cho đường thẳng nằm trong mặt phẳng
và đường thẳng
nằm trong mặt phẳng
. Mệnh đề nào sau đây sai?
Nếu thì ngoài trường hợp
thì
có thể chéo nhau.
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Xét từng mệnh đề ta có
a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.
b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.
c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).
d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).
Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên
Cho hình chóp có đáy
là hình bình hành. Trung điểm của các cạnh
lần lượt là
. Chọn đáp án đúng.
Ta có:
Chọn mệnh đề đúng trong các mệnh đề sau:
Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.
=> Mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.