Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:
Độ dài của nhóm là:
Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:
Độ dài của nhóm là:
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Chiều cao trung bình của học sinh trong bảng trên:
Ta có:
Chiều cao đại diện (h) | Số học sinh | Tích các giá trị |
135 | 2 | 270 |
145 | 4 | 580 |
155 | 9 | 1395 |
165 | 13 | 2145 |
175 | 8 | 1400 |
185 | 3 | 555 |
195 | 1 | 195 |
Tổng | N = 40 | 6540 |
Chiều cao trung bình là:
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
[95; 105) | 9 | 9 |
[105; 115) | 13 | 22 |
[115; 125) | 26 | 48 |
[125; 135) | 30 | 78 |
[135; 145) | 12 | 90 |
[145; 155) | 10 | 100 |
Tổng | N = 100 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Tính độ cao trung bình của một số cây trong bảng số liệu dưới đây:
Chiều cao h (cm) | Số cây |
130 < h ≤ 140 | 3 |
140 < h ≤ 150 | 7 |
150 < h ≤ 160 | 5 |
Tính trung vị của mẫu số liệu ghép nhóm.
Ta có:
Chiều cao h (cm) | Số cây | Tần số tích lũy |
130 < h ≤ 140 | 3 | 3 |
140 < h ≤ 150 | 7 | 10 |
150 < h ≤ 160 | 5 | 15 |
Tổng | 15 |
|
Ta có:
=> Nhóm chứa trung vị là: 140 < h ≤ 150
Khi đó:
Trung vị là:
Cho mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Tính giá trị trung bình của mẫu dữ liệu ghép nhóm trên.
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | 12 | 300 |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 50 | 1180 |
Giá trị trung bình là:
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Tìm khoảng chứa trung vị?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Ta lại có:
=> Nhóm chứa trung vị là:
Cho bảng số liệu ghép nhóm sau:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8
Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3
Cho bảng số liệu ghép nhóm sau:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8
Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3
Ta có:
Nhóm | Tần số | Tần số tích lũy |
[0; 20) | 16 | 16 |
[20; 40) | 12 | 28 |
[40; 60) | 25 | 53 |
[60; 80) | 15 | 68 |
[80; 100) | 12 | 80 |
[100; 120) | 10 | 90 |
Tổng | N = 90 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [20; 40)
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: [60; 80)
Khi đó ta có:
Tứ phân vị thứ ba được tính như sau:
Ước tính cân nặng trung bình của 20 người được cho trong bảng dữ liệu dưới đây:
Cân nặng (x, kg) | Số người |
0 < x ≤ 20 | 2 |
20 < x ≤ 40 | 6 |
40 < x ≤ 60 | 7 |
60 < x ≤ 80 | 4 |
80 < x ≤ 100 | 1 |
Ta có:
Cân nặng đại diện (x, kg) | Số người | Tích các giá trị |
10 | 2 | 20 |
30 | 6 | 180 |
50 | 7 | 350 |
70 | 4 | 280 |
90 | 1 | 90 |
Tổng | N = 20 | 920 |
Cân nặng trung bình của 20 người đó là:
Bảng tần số được nhóm chính xác cho tập hợp dữ liệu là bảng nào dưới đây?
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Đáp án đúng là:
Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:
Điểm | Số học sinh |
(20; 30] | 1 |
(30; 40] | 1 |
(40; 50] | 10 |
(50; 60] | 11 |
(60; 70] | 5 |
(70; 80] | 2 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên.
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
(20; 30] | 1 | 1 |
(30; 40] | 1 | 2 |
(40; 50] | 10 | 12 |
(50; 60] | 11 | 23 |
(60; 70] | 5 | 28 |
(70; 80] | 2 | 30 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là (40; 50]
Khi đó:
Tứ phân vị thứ nhất của mẫu số liệu là:
Tìm số trung bình của mẫu dữ liệu ghép nhóm dưới đây:
Nhóm | Tần số |
(2; 4] | 3 |
(4; 6] | 4 |
(6; 8] | 2 |
(8; 10] | 1 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
3 | 3 | 9 |
5 | 4 | 20 |
7 | 2 | 14 |
9 | 1 | 9 |
Tổng | N = 10 | 52 |
Số trung bình là:
Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:
Khoảng | Tần số |
Nhỏ hơn 10 | 10 |
Nhỏ hơn 20 | 20 |
Nhỏ hơn 30 | 30 |
Nhỏ hơn 40 | 40 |
Nhỏ hơn 50 | 50 |
Nhỏ hơn 60 | 30 |
Tính giá trị tứ phân vị thứ ba.
Ta có:
Nhóm dữ liệu | Tần số | Tần số tích lũy |
(0; 10] | 10 | 10 |
(10; 20] | 20 | 30 |
(20; 30] | 30 | 60 |
(30; 40] | 50 | 110 |
(40; 50] | 40 | 150 |
(50; 60] | 30 | 180 |
Tổng | N = 180 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (40; 50]
Khi đó:
Tứ phân vị thứ ba là:
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
Tốc độ | Tần số |
40 ≤ x < 50 | 4 |
50 ≤ x < 60 | 5 |
60 ≤ x < 70 | 7 |
70 ≤ x < 80 | 4 |
Xác định giá trị của ?
Ta có:
Tốc độ | Tần số | Tần số tích lũy |
40 ≤ x < 50 | 4 | 4 |
50 ≤ x < 60 | 5 | 9 |
60 ≤ x < 70 | 7 | 16 |
70 ≤ x < 80 | 4 | 20 |
Tổng | N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 60)
Khi đó:
Tứ phân vị thứ nhất là:
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
Tổng | N = 30 |
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
Tổng | N = 30 |
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |