Mệnh đề nào trong các mệnh đề sau đây là sai?
Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.
Mệnh đề nào trong các mệnh đề sau đây là sai?
Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.
Cho hình chóp có đáy
là hình bình hành,
là trọng tâm của tam giác
. Lấy
sao cho
. Đường thẳng qua
và song song với
cắt
tại
. Xác định mặt phẳng song song với đường thẳng
?
Hình vẽ minh họa
Ta có:
Cho là hai đường thẳng phân biệt và mặt phẳng
. Chọn mệnh đề đúng?
Ta có:
sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.
sai trong trường hợp
đúng vì là hai đường thẳng phân biệt.
sai vì đường thẳng hoặc
Cho hình chóp tứ giác , đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Trong các khẳng định sau khẳng định nào sai?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.
Cho hình chóp có đáy
là hình vuông cạnh
và
,
. Lấy
lần lượt là trung điểm của
, lấy
. Giả sử hình
tạo bởi các giao tuyến của mặt phẳng
với các mặt bên của hình chóp. Tính chu vi của hình
.
Hình vẽ minh họa
Ta có: => Giao tuyến của
và
cũng song song với
.
Xét mặt phẳng kẻ
=> Hình là hình thang
.
Ta có: là đường trung bình của tam giác
=>
Ta có: nên tam giác
vuông tại
Lại có:
Vì
Chứng minh tương tự ta tính được
=> Chu vi hình là:
Cho tứ diện . Lấy các điểm
sao cho
. Mặt phẳng
là mặt phẳng chứa đường thẳng
và song song với
. Hình tạo bởi các giao tuyến của
và các mặt của tứ diện là:
Hình vẽ minh họa
Theo bài ra ta có:
nên giao tuyến của
với
cũng song song với
.
Xét mặt phẳng kẻ
Xét mặt phẳng kẻ
Hình tạo bởi các giao tuyến của và các mặt của tứ diện là hình thang
.
Ta có:
Vậy hình thang có đáy lớn gấp 2 lần đáy nhỏ.
Cho tứ diện . Lấy
sao cho
,
là trọng tâm tam giác
. Xác định mặt phẳng song song với đường thẳng
?
Hình vẽ minh họa
Gọi là trung điểm của
.
Xét tam giác ta có:
Trong các mệnh đề sau đây, mệnh đề nào sai?
Hai đường thẳng phân biệt cùng song song với
thì
có thể cắt nhau cùng nằm trong
.
Cho hình chóp tứ giác , đáy
là tứ giác lồi,
. Gọi
là mặt phẳng qua
song song với các đường thẳng
. Xác định các giao tuyến của
với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh hoạ
Xét mặt phẳng , kẻ đường thẳng qua
và song song với
, cắt
lần lượt tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Vậy hình tạo bởi các giao tuyến là hình thang với
.
Trong các khẳng định sau, khẳng định nào là đúng?
Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.
Cho tứ diện , lấy điểm
. Mặt phẳng
đi qua
và song song với
và
. Xác định các giao tuyến của
và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh họa:
Mặt phẳng qua
và song song với
=> Mặt phẳng cắt mặt phẳng
theo giao tuyến
song song với
.
Mặt khác, song song với
nên
cắt
và
theo các giao tuyến
và
với
=> Hình tạo bởi các giao tuyến là tứ giác .
Mặt khác
=> Tứ giác là hình bình hành.
Vậy hình tạo bởi các giao tuyến của và các mặt của hình chóp là hình bình hành.
Cho hình chóp có đáy
là hình bình hành tâm
,
là trung điểm của
. Các giao tuyến của hình chóp
với mặt phẳng đi qua điểm
và song song với
và
là hình gì?
Hình vẽ minh họa:
Gọi mặt phẳng đi qua điểm và song song với
và
là mặt phẳng
.
với
hay
là trung điểm của
.
Suy ra với NP//SB hay P là trung điểm của SA.
Suy ra với PQ//AC hay Q là trung điểm của SC.
Xét mặt phẳng (ABCD) gọi , trong (SCD) gọi
suy ra
Vậy các giao tuyến tạo bởi hình chóp và mặt phẳng là ngũ giác MNPHQ.
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Cho hình chóp có đáy
là hình bình hành. Các điểm
lần lượt là trọng tâm các tam giác
,
,
. Mặt phẳng nào dưới đây song song với đường thẳng
?
Hình vẽ minh họa
Ta có: