Luyện tập Giới hạn của dãy số CTST

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng cao
    Tính giới hạn

    Cho dãy số \left( u_{n}
ight)thỏa mãn \left\{
\begin{matrix}
u_{1} = 3 \\
u_{n + 1} = {u_{n}}^{2} - 3u_{n} + 4 \\
\end{matrix};\left( n \in \mathbb{N}^{*} ight) ight.. Biết dãy số \left( u_{n} ight) là dãy tăng và không bị chặn trên. Đặt v_{n} =
\frac{1}{u_{1} - 1} + \frac{1}{u_{2} - 1} + \frac{1}{u_{3} - 1} + ... +
\frac{1}{u_{n} - 1};\left( n \in \mathbb{N}^{*} ight). Tính \lim_{n ightarrow \infty}\left( v_{n}
ight)

    Hướng dẫn:

    Ta có: u_{n + 1} = u_{n}^{2} - 3u_{n} +
4

    \Rightarrow u_{n + 1} - 2 = u_{n}^{2} -
3u_{n} + 2 = \left( u_{n} - 1 ight).\left( u_{n} - 2
ight)

    \Leftrightarrow \frac{1}{u_{n + 1} - 2}
= \frac{1}{\left( u_{n} - 1 ight).\left( u_{n} - 2
ight)}

    \Leftrightarrow \frac{1}{u_{n + 1} - 2}
= \frac{1}{n_{n} - 2} - \frac{1}{u_{n} - 1}

    \Leftrightarrow \frac{1}{u_{n} - 1} =
\frac{1}{n_{n} - 2} - \frac{1}{u_{n + 1} - 2}

    \Rightarrow v_{n} = \frac{1}{u_{1} - 2}
- \frac{1}{u_{2} - 2} + \frac{1}{u_{2} - 2} - \frac{1}{u_{3} -
2}

    + \cdots + \frac{1}{u_{n} - 2} -
\frac{1}{u_{n + 1} - 2}

    = \frac{1}{u_{1} - 2} - \frac{1}{u_{n +
1} - 2}

    \Rightarrow \lim_{x ightarrow +
\infty}v_{n} = \lim_{x ightarrow + \infty}\left( \frac{1}{u_{1} - 2} -
\frac{1}{u_{n + 1} - 2} ight) = \frac{1}{u_{1} - 2} = 1

  • Câu 2: Vận dụng cao
    Tìm các số nguyên a

    Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để\lim\sqrt{\frac{9^{n} + 3^{n +
1}}{5^{n} + 9^{n + a}}} \leq \frac{1}{2187}.

    Hướng dẫn:

    Ta có: \dfrac{9^{n} + 3^{n + 1}}{5^{n} +9^{n + a}} > 0;\forall n \in \mathbb{N}^{*}nên

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} = \sqrt{\lim\dfrac{9^{n} + 3^{n + 1}}{5^{n} + 9^{n +a}}}

    = \sqrt{\lim\dfrac{1 + 3.\left(\dfrac{1}{3} ight)^{n}}{\left( \dfrac{5}{9} ight)^{n} + 9^{a}}} =\sqrt{\dfrac{1}{9^{a}}} = \dfrac{1}{3^{a}}

    Theo đề bài ta có

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} \leq \dfrac{1}{2187}

    \begin{matrix}
   \Leftrightarrow \dfrac{1}{{{3^a}}} \leqslant \dfrac{1}{{2187}} \Leftrightarrow {3^a} \geqslant 2187 \hfill \\
   \Leftrightarrow a \geqslant 7 \hfill \\ 
\end{matrix}

    Mặt khác \left\{ \begin{matrix}
a\mathbb{\in Z} \\
a \in (0;2019) \\
\end{matrix} \Rightarrow a \in \left\{ 7;8;9;...;2018 ight\} ight.

    Vậy có tất cả 2012 giá trị nguyên thỏa mãn.

  • Câu 3: Vận dụng
    Tính giá trị của biểu thức S

    Tính tổng S = 1 + \frac{2}{3} +
\frac{4}{9} + ... + \frac{2^{n}}{3^{n}} + ... .

    Hướng dẫn:

    Ta có:

    S = 1 + \frac{2}{3} + \frac{4}{9} + ...
+ \frac{2^{n}}{3^{n}} + ...

    = \underbrace {1 + \frac{2}{3} + {{\left( {\frac{2}{3}} ight)}^2} + ... + {{\left( {\frac{2}{3}} ight)}^n} + ...}_{CSN:{u_1} = 1;q = \frac{2}{3}}

    = \dfrac{1}{1 - \dfrac{2}{3}} =3

  • Câu 4: Vận dụng
    Tính tổng dãy số

    Tính tổng S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ... .

    Hướng dẫn:

    Ta có:

    S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ...

    = 9\left( {\underbrace {1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^{n - 1}}}} + ...}_{CSN:{u_1} = 1;q = \frac{1}{3}}} ight)

    = 9.\left( \dfrac{1}{1 - \dfrac{1}{3}}ight) = \dfrac{27}{2}

  • Câu 5: Thông hiểu
    Dãy số nào sau đây có giới hạn bằng 0

    Dãy số nào sau đây có giới hạn bằng 0?

    Hướng dẫn:

    Ta có:

    \lim \frac{{{n^2} - 2n}}{{5n + 5{n^2}}} = \lim \frac{{n\left( {1 - \frac{2}{n}} ight)}}{{n\left( {\frac{5}{n} + 5} ight)}} = \frac{1}{5}

    \lim \frac{{1 - 2n}}{{5n + 5}} = \lim \frac{{n\left( {\frac{1}{n} - 2} ight)}}{{n\left( {5 + \frac{5}{n}} ight)}} = \frac{{ - 2}}{5}

    \lim \frac{{1 - 2{n^2}}}{{5n + 5}} = \lim \frac{{{n^2}\left( {\frac{1}{{{n^2}}} - 2} ight)}}{{n\left( {5 + \frac{5}{n}} ight)}} =  + \infty

    \lim \frac{{1 - 2n}}{{5n + 5{n^2}}} = \lim \frac{{{n^2}\left( {\frac{1}{{{n^2}}} - \frac{2}{n}} ight)}}{{{n^2}\left( {\frac{5}{n} + 5} ight)}} = 0

     

  • Câu 6: Nhận biết
    Tính giới hạn của dãy số

    \lim \frac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} bằng:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} \hfill \\   = \lim \dfrac{{3 - \dfrac{2}{{{n^3}}} + \dfrac{3}{{{n^4}}}}}{{4 + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}}} = \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu
    Dãy số nào dưới đây có giới hạn bằng 0

    Dãy số nào dưới đây có giới hạn bằng 0?

    Hướng dẫn:

    Ta có: \lim {(0,999)^n} = 0

    Do (0,999)^{n} là dãy cấp số nhân có \left| q ight| < 1

  • Câu 8: Thông hiểu
    Tính giới hạn của dãy số

    Giá trị của giới hạn \lim(\sqrt{n^{2}-1}-\sqrt{3n^{2}+2}) là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - 1}  - \sqrt {3{n^2} + 2} } ight) \hfill \\   = \lim \left[ {n\left( {\sqrt {1 - \dfrac{1}{{{n^2}}}}  - \sqrt {3 + \dfrac{2}{{{n^2}}}} } ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ \begin{gathered}  \lim n =  + \infty  \hfill \\  \lim \left( {\sqrt {1 - \frac{1}{{{n^2}}}}  - \sqrt {3 + \frac{2}{{{n^2}}}} } ight) = 1 - \sqrt 3  < 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim f\left( x ight) =  - \infty  \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu
    Tính giá trị của giới hạn

    Giá trị của giới hạn \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {{n^2} - n + 1}  - n} ight)\left( {\sqrt {{n^2} - n + 1}  + n} ight)}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\ \end{matrix}

    \begin{matrix}   = \lim \dfrac{{{n^2} - n + 1 - {n^2}}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\   = \lim \dfrac{{ - n + 1}}{{\sqrt {{n^2} - n + 1}  + n}} \hfill \\   = \lim \dfrac{{n\left( { - 1 + \dfrac{1}{n}} ight)}}{{n\left( {\sqrt {1 - \frac{1}{n} + \dfrac{1}{{{n^2}}}}  + 1} ight)}} =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu
    Giá trị của giới hạn

    Giá trị của giới hạn \lim \left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight) bằng: 

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight)\left( {\sqrt {n + 5}  + \sqrt {n + 1} } ight)}}{{\sqrt {n + 5}  + \sqrt {n + 1} }} \hfill \\   = \lim \dfrac{{n + 5 - n - 1}}{{\sqrt {n + 5}  + \sqrt {n + 1} }} \hfill \\   = \lim \dfrac{4}{{\sqrt {n + 5}  + \sqrt {n + 1} }} = 0 \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu
    Kết quả của giới hạn bằng bao nhiêu

    Kết quả của giới hạn \lim \frac{{3\sin n + 4\cos n}}{{n + 1}} bằng:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}} + \dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}}} ight) + \lim \left( {\dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {0 \leqslant \left| {\dfrac{{3\sin n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \\   {0 \leqslant \left| {\dfrac{{4\cos n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \end{array}} ight. \hfill \\   \Rightarrow \lim f\left( x ight) = 0 \hfill \\ \end{matrix}

  • Câu 12: Nhận biết
    Tính giới hạn

    \lim(5n-4n^{3}) bằng

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 13: Nhận biết
    Tính giới hạn dãy số

    \lim \frac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} bằng:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \lim \dfrac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} = \lim \dfrac{{\sqrt[3]{{{n^3}\left( {1 + \dfrac{1}{{{n^3}}}} ight)}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} \hfill \\   = \lim \dfrac{{n\sqrt[3]{{1 + \dfrac{1}{{{n^3}}}}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} = \dfrac{1}{6} \hfill \\ \end{matrix}

  • Câu 14: Nhận biết
    Tìm giá trị của lim?

    Giá trị của \lim\sqrt[n]{a} với a> 0 bằng:

    Hướng dẫn:

    Nếu a=1 thì ta có luôn giới hạn bằng 1.

    • Với  a > 1 thì khi đó: a = \left\lbrack 1 +\left( \sqrt[n]{a} - 1 ight) ightbrack^{n} > n(\sqrt[n]{a} -1)

    Suy ra: 0 < \sqrt[n]{a - 1} <\frac{a}{n} ightarrow 0 nên \lim\sqrt[n]{a} = 1

    • Với 0 < a < 1 thì khi đó:  \frac{1}{a} >1 .

    Suy ra: \lim \sqrt[n]{\frac{1}{a} }=1 \Rightarrow \lim \sqrt[n]{a}=1.\frac{1}{a}>1 \Rightarrow \lim \sqrt[n]{a}=1

    Tóm lại ta luôn có: \lim\sqrt[n]{a} =1 với a > 0 .

  • Câu 15: Vận dụng
    Tìm giới hạn?

    Giá trị của \lim\frac{a^{n}}{n!} bằng:

    Hướng dẫn:

    Gọi m là số tự nhiên thỏa: m+1>|a|.

    Khi đó với mọi n > m+1.

    Ta có: 0 < \left| \frac{a^{n}}{n!}ight| = \left| \frac{a}{1}.\frac{a}{2}\ldots\frac{a}{m} ight|.\left|\frac{a}{m + 1}\ldots\frac{a}{n} ight| < \frac{|a|^{m}}{m!}.\left(\frac{|a|}{m + 1} ight)^{n - m}

    \lim\left( \frac{|a|}{m + 1}ight)^{n - m} = 0 .

    Từ đó suy ra: \lim\frac{a^{n}}{n!} =0 .

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (27%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 11 lượt xem
Sắp xếp theo