Luyện tập Các quy tắc tính đạo hàm CTST

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tính giá trị của f''(2)

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = sin2x có đạo hàm là y’ và y’’. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 2\sin 2x \hfill \\   \Rightarrow y'' =  - 4.\cos 2x =  - 4y \hfill \\   \Rightarrow y'' + 4y = 0 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu
    Giải phương trình f'(x) = 0

    Cho hàm số f(x)=\frac{1}{3}x^{3}-2\sqrt{2}x^{2}+8x-1, có đao hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0 là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = \dfrac{1}{3}{x^3} - 2\sqrt 2 {x^2} + 8x - 1 \hfill \\   \Rightarrow f'\left( x ight) = {x^2} - 4\sqrt 2 x + 8 \hfill \\  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow {x^2} - 4\sqrt 2 x + 8 = 0 \hfill \\   \Leftrightarrow {\left( {x - 2\sqrt 2 } ight)^2} = 0 \hfill \\   \Leftrightarrow x = 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy tập nghiệm của phương trình là S=\left\{ {2\sqrt 2 } ight\}

  • Câu 4: Thông hiểu
    Giải bất phương trình y" < 0

    Cho hàm số y=\frac{1}{(x+1)^{3}}. Giải bất phương trình y" < 0

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{{{(x + 1)}^3}}} \hfill \\   \Rightarrow y' = \dfrac{{ - 3.{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 3}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow y'' = \dfrac{{3.4.{{\left( {x + 1} ight)}^3}}}{{{{\left( {x + 1} ight)}^8}}} = \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' < 0 \hfill \\   \Leftrightarrow \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} < 0 \hfill \\   \Leftrightarrow {\left( {x + 1} ight)^5} < 0,\left( {{\text{Do }}12 > 0} ight) \hfill \\   \Leftrightarrow x <  - 1 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu
    Tính đạo hàm cấp hai

    Đạo hàm cấp hai của hàm số y=\frac{1}{2x-3} bằng biểu thức nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{2x - 3}} \hfill \\   \Rightarrow y' = \dfrac{{ - \left( {2x - 3} ight)\prime }}{{{{\left( {2x - 3} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {2x - 3} ight)}^2}}} \hfill \\   \Rightarrow y'' =  - 2.\frac{{ - \left[ {{{\left( {2x - 3} ight)}^2}} ight]'}}{{{{\left( {2x - 3} ight)}^4}}} \hfill \\   = \dfrac{{2.2.2.\left( {2x - 3} ight)}}{{{{\left( {2x - 3} ight)}^4}}} = \dfrac{8}{{{{\left( {2x - 3} ight)}^3}}} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng cao
    Tính giá trị biểu thức T

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 7: Nhận biết
    Tính đạo hàm

    Đạo hàm của hàm số: y=4\sqrt{x}-\frac{5}{x}

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = 4\sqrt x  - \dfrac{5}{x} \hfill \\   \Rightarrow y' = \dfrac{4}{{2\sqrt x }} + \dfrac{5}{{{x^2}}} = \dfrac{2}{{\sqrt x }} + \dfrac{5}{{{x^2}}} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu
    Tính đạo hàm lượng giác

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y' = \left( {{x^2}} ight)\prime \tan x + \left( {\tan x} ight)'.{x^2} + \left( {\sqrt x } ight)\prime \hfill \\   = 2x\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 9: Nhận biết
    Tìm biểu thức đạo hàm tương ứng của hàm số

    Đạo hàm của hàm số y=\frac{3x-2}{2x+5} bằng biểu thức nào dưới đây? 

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{2x + 5}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {3x - 2} ight)'\left( {2x + 5} ight) - \left( {3x - 2} ight).\left( {2x + 5} ight)'}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\   = \dfrac{{3\left( {2x + 5} ight) - 2\left( {3x - 2} ight)}}{{{{\left( {2x + 5} ight)}^2}}} = \dfrac{{19}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 10: Nhận biết
    Tính đạo hàm cấp 3 của hàm số tại x = 1

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

  • Câu 11: Thông hiểu
    Tính cường độ dòng điện tại thời điểm t = 2s

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  I\left( t ight) = Q'\left( t ight) \hfill \\   \Rightarrow I = 4t + 1 \hfill \\   \Rightarrow I\left( 2 ight) = 4.2 + 1 = 9\left( A ight) \hfill \\ \end{matrix}

  • Câu 12: Vận dụng cao
    Tính thời điểm vận tốc đạt giá trị lớn nhất

    Một vật chuyển động theo quy luật S =10t^{2} - \frac{1}{3}t^{3}, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và S (m) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 15 giây, kể từ khi vật bắt đầu chuyển động, vận tốc v (m/s) của vật đạt giá trị lớn nhất tại thời điểm t (s) bằng:

    Hướng dẫn:

    Ta có vận tốc v của vật tại thời điểm t được tính theo công thức v(t) = S'(t) = - t^{2} + 20t. Bảng biến thiên của hàm v = v(t) trên (0; 15):

    Vậy vận tốc của vật đạt GTLN tại thời điểm t = 10 (s)

  • Câu 13: Vận dụng
    Tìm nghiệm của phương trình

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 14: Nhận biết
    Tính đạo hàm hàm lượng giác

    Tính đạo hàm của hàm số y = 2\cos {x^2}

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = 2\cos {x^2} \hfill \\   \Rightarrow y' = \left( {{x^2}} ight)'.2.\left[ { - \sin \left( {{x^2}} ight)} ight] \hfill \\   =  - 4x\sin \left( {{x^2}} ight) \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu
    Tính giá trị của đạo hàm bậc hai

    Cho hàm số f(x)=sin^{3}x+x^{2}. Tính giá trị của f"(-\frac{\pi}{2}).

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f(x) = si{n^3}x + {x^2} \hfill \\   \Rightarrow f'\left( x ight) = 3.{\sin ^2}x.\cos x + 2x \hfill \\   \Rightarrow f''\left( x ight) = 6\sin x.{\cos ^2}x - 3.{\sin ^3}x + 2 \hfill \\   \Rightarrow f''\left( { - \dfrac{\pi }{2}} ight) = 5 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (47%):
    2/3
  • Vận dụng (7%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 3 lượt xem
Sắp xếp theo