Ôn tập chương 7 Đạo hàm Chân trời sáng tạo

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Tính đạo hàm của hàm số y = \tan3x - \cot3x.

    Hướng dẫn:

    Ta có:

    y =\tan3x - \cot3x

    \Rightarrow y' = \frac{3}{\cos^{2}3x}+ \frac{3}{\sin^{2}3x} = \frac{3}{\sin^{2}3x.\cos^{2}3x}

    = \dfrac{3}{\dfrac{1}{4}\sin^{2}6x} =\dfrac{12}{\sin^{2}6x}

  • Câu 2: Thông hiểu
    Chọn hệ thức đúng

    Cho hàm số y =
\tan x. Chọn hệ thức đúng?

    Hướng dẫn:

    Ta có:

    y = \tan x \Rightarrow y' =\frac{1}{\cos^{2}x}

    Khi đó ta có:

    y' - y^{2} - 1 = \frac{1}{\cos^{2}x}- \tan^{2}x - 1

    = \frac{1}{\cos^{2}x} -\frac{1}{\cos^{2}x} - 1 = 0

  • Câu 3: Vận dụng cao
    Tính giá trị biểu thức

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 4: Nhận biết
    Xác định công thức đạo hàm

    Tính đạo hàm của hàm số y = \sin\left( x^{2} - 3x + 2
ight).

    Hướng dẫn:

    Ta có:

    y = \sin\left( x^{2} - 3x + 2
ight)

    \Rightarrow y' = \left( x^{2} - 3x +2 ight)'.\cos\left( x^{2} - 3x + 2 ight)

    = (2x - 3).\cos\left( x^{2} - 3x + 2ight)

  • Câu 5: Thông hiểu
    Điền đáp án vào chỗ trống

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c . Giá trị của biểu thức T = a + b + 5c = 4

    Đáp án là:

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c . Giá trị của biểu thức T = a + b + 5c = 4

    Ta có:

    \left( \frac{x^{4}}{4} + x^{3} -
\frac{x^{2}}{2} + x - 2019 ight)' = x^{3} + 3x^{2} - x +
1

    \Rightarrow \left( \frac{x^{4}}{4} +
x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' = \left( x^{3} +
3x^{2} - x + 1 ight)'

    = 3x^{2} + 6x - 1 \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 6: Thông hiểu
    Tính y'

    Tính đạo hàm của hàm số y = (1 - x)(1 - 2x)(1 - 3x)?

    Hướng dẫn:

    Ta có:

    y = (1 - x)(1 - 2x)(1 - 3x)

    = \left( 1 - 3x + 2x^{2} ight)(1 -
3x)

    = 1 - 3x - 3x + 9x^{2} + 2x^{2} -
6x^{3}

    = 1 - 6x + 11x^{2} - 6x^{3}

    \Rightarrow y' = - 6 + 22x -
18x^{2}

  • Câu 7: Thông hiểu
    Điền đáp án vào ô trống

    Thực hiện tính đạo hàm của hàm số y = x + \sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x} +
\sqrt[5]{x} thu được kết quả có dạng y' = a + \frac{b}{\sqrt{x}} +
\frac{c}{\sqrt[3]{x^{2}}} + \frac{d}{\sqrt[4]{x^{3}}} +
\frac{e}{\sqrt[5]{x^{4}}} . Khi đó giá trị của biểu thức T = a + 2b - 3c + 4d + 5e bằng: 3

    Đáp án là:

    Thực hiện tính đạo hàm của hàm số y = x + \sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x} +
\sqrt[5]{x} thu được kết quả có dạng y' = a + \frac{b}{\sqrt{x}} +
\frac{c}{\sqrt[3]{x^{2}}} + \frac{d}{\sqrt[4]{x^{3}}} +
\frac{e}{\sqrt[5]{x^{4}}} . Khi đó giá trị của biểu thức T = a + 2b - 3c + 4d + 5e bằng: 3

    Ta có:

    y = x + \sqrt{x} + \sqrt[3]{x} +
\sqrt[4]{x} + \sqrt[5]{x}

    \Rightarrow y' = 1 +
\frac{1}{2\sqrt{x}} + \frac{1}{3\sqrt[3]{x^{2}}} +
\frac{1}{4\sqrt[4]{x^{3}}} + \frac{1}{5\sqrt[5]{x^{4}}}

    \Rightarrow \left\{ \begin{matrix}a = 1 \\b = \dfrac{1}{2} \\c = \dfrac{1}{3} \\d = \dfrac{1}{4} \\e = \dfrac{1}{5} \\\end{matrix} ight.\  \Rightarrow T = 1 + 2.\dfrac{1}{2} - 3.\dfrac{1}{3}+ 4.\dfrac{1}{4} + 5.\dfrac{1}{5} = 3

  • Câu 8: Vận dụng
    Tính giá trị biểu thức S

    Cho hàm số f(x)= \ln2021 + \ln\left( \frac{x}{x + 1} ight). Tính giá trị biểu thức:

    S = f'(1) + f'(2) + .... +
f'(2020)

    Hướng dẫn:

    Ta có:

    f'(x) = \dfrac{\left( \dfrac{x}{x + 1}ight)'}{\dfrac{x}{x + 1}} = \dfrac{\dfrac{1}{(x + 1)^{2}}}{\dfrac{x}{x+ 1}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Suy ra = \frac{1}{x(x + 1)} = \frac{1}{x}
- \frac{1}{x + 1}

    f'(2) = \frac{1}{2} -
\frac{1}{3}

    f'(3) = \frac{1}{3} -
\frac{1}{4}

    f'(2020) = \frac{1}{2020} -
\frac{1}{2021}

    Vậy S = f'(1) + f'(2) + .... +
f'(2020) = 1 - \frac{1}{2021} = \frac{2020}{2021}

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Tính đạo hàm của hàm số sau: y = 4x^{2} - \sqrt{x} + \frac{1}{x}.

    Hướng dẫn:

    Ta có: y = 4x^{2} - \sqrt{x} +
\frac{1}{x}

    \Rightarrow y' = 8x -
\frac{1}{2\sqrt{x}} - \frac{1}{x^{2}}

  • Câu 10: Thông hiểu
    Xác định công thức y'(x)

    Tính đạo hàm của hàm số y = \left( x^{2} + 2x ight).e^{x}.

    Hướng dẫn:

    Ta có:

    y = \left( x^{2} + 2x
ight).e^{x}

    \Rightarrow y' = (2x + 2)e^{x} +
\left( x^{2} + 2x ight)e^{x} = \left( x^{2} + 4x + 2
ight)e^{x}

  • Câu 11: Thông hiểu
    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \sqrt{\frac{1}{2} +
\frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} +
\frac{1}{2}\cos x}}} với x \in
(0;\pi)?

    Hướng dẫn:

    Ta có:

    y = \sqrt{\frac{1}{2} +
\frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} +
\frac{1}{2}\cos x}}}

    = \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\cos^{2}\frac{x}{2}}}}

    = \sqrt{\frac{1}{2} +
\frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos\frac{x}{2}}}

    = \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\cos^{2}\frac{x}{4}}}

    = \sqrt{\frac{1}{2} +\frac{1}{2}\cos\frac{x}{4}} = \sqrt{\cos^{2}\frac{x}{8}} =\cos\frac{x}{8}

    \Rightarrow y' = \left(
\cos\frac{x}{8} ight)' = - \frac{1}{8}\sin\frac{x}{8}

  • Câu 12: Thông hiểu
    Điền biểu thức còn thiếu vào chỗ trống

    Cho hàm số y =
f(x) xác định bởi công thức \frac{\sqrt{x}}{x + 1}. Thực hiện tính đạo hàm của hàm số ta được y' =
\frac{...}{(x + 1)^{2}}. Biểu thức cần điền vào chỗ trống.

    Hướng dẫn:

    Ta có:

    y = \frac{\sqrt{x}}{x + 1}

    \Rightarrow y' =\dfrac{\dfrac{1}{2\sqrt{x}}(x + 1) - \sqrt{x}}{(x + 1)^{2}} = \dfrac{1 -x}{2\sqrt{x}(x + 1)^{2}}

  • Câu 13: Vận dụng
    Xác định các phương trình tiếp tuyến

    Cho hàm số y =
x^{3} - 2x + 1. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục Oxy một tam giác vuông cân tại O?

    Hướng dẫn:

    Gọi M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d)

    Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng \frac{x}{a} + \frac{y}{b} = 1

    \Rightarrow y = b\left( 1 - \frac{x}{a}
ight) = - \frac{b}{a} + b;\left( a,b eq 0;|a| = |b|
ight)(d)

    M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d) khi đó:

    3{x_{0}}^{2} - 2 = -
\frac{b}{a}

    |a| = |b| \Rightarrow \left\lbrack
\begin{matrix}
3{x_{0}}^{2} - 2 = 1 \\
3{x_{0}}^{2} - 2 = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 1 \Rightarrow y_{0} = 0 \\\begin{matrix}x_{0} = - 1 \Rightarrow y_{0} = 2 \\x_{0} = \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 - 5\sqrt{3}}{9}\\x_{0} = - \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 + 5\sqrt{3}}{9}\\\end{matrix} \\\end{matrix} ight.

    Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:

    y = 1(x - 1) + 0 \Rightarrow y = x -
1

    y = 1(x - 1) + 2 \Rightarrow y = x +
3

    y = - 1\left( x - \frac{\sqrt{3}}{3}
ight) + \frac{9 - 5\sqrt{3}}{9} \Rightarrow y = x + \frac{9 -
2\sqrt{3}}{9}

    y = - 1\left( x + \frac{\sqrt{3}}{3}
ight) + \frac{9 + 5\sqrt{3}}{9} \Rightarrow y = - x + \frac{9 +
2\sqrt{3}}{9}

  • Câu 14: Thông hiểu
    Chọn hệ thức đúng

    Cho hàm số y =
e^{2x} + 2e^{- x}. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Ta có:

    y = e^{2x} + 2e^{- x}

    \Rightarrow y' = 2e^{2x} - 2e^{-
x}

    \Rightarrow y'' = \left( 2e^{2x}
- 2e^{- x} ight)' = 4e^{2x} + 2e^{- x}

    \Rightarrow y''' =
(y'')' = 8e^{2x} - 2e^{- x}

    \Rightarrow y''' -
y'' = 2y'

  • Câu 15: Thông hiểu
    Tính vận tốc tức thời của chuyển động

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (13%):
    2/3
  • Thông hiểu (67%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 2 lượt xem
Sắp xếp theo