Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.
Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.
Cho hình chóp tứ giác . Gọi
là trung điểm của
,
. Xác định các giao tuyến của mặt phẳng
với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:
Trường hợp 1:
Hình vẽ minh hoạ
Nếu . Gọi
Nếu
=> Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Nếu . Gọi
Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Trường hợp 2:
Hình vẽ minh hoạ
Nếu . Hình tạo bởi các giao tuyến của mặt phẳng
với hình chóp là tam giác
.
Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.
Cho tứ diện cạnh bằng 1. Gọi
là trung điểm của
,
đối xứng với
qua
,
đối xứng với
qua
. Xác định các giao điểm của mặt phẳng
với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa
Gọi
Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.
Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.
Suy ra . Chứng minh tương tự ta có:
. Do đó ta có:
Tứ diện đều ABCD có cạnh bằng 1 nên
Áp dụng định lí cosin cho tam giác ta có:
Áp dụng công thức Hê- rông tính diện tích tam giác ta được:
Cho hình chóp có đáy là hình bình hành
. Gọi
. Giả sử mặt phẳng
đi qua
và song song với
. Xác định các giao tuyến của mặt phẳng
với hình chóp. Hình tạo bởi các giao tuyến trên là hình gì?
Hình vẽ minh họa
Ta có:
và
Tương tự ta cũng có
Khi đó
=> Hình tạo bởi các giao tuyến của (α) với hình chóp là tam giác MNP.
Chọn mệnh đề sai.
Mệnh đề "Tồn tại duy nhất một đường thẳng qua một điểm và song song với một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì không tồn tại đường thẳng nào đi qua điểm đó và song song với đường thẳng cho trước
Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Giả sử CM và DN đồng phẳng.
Khi đó, ta có A, B cùng thuộc mặt phẳng (MNDC)
=> A, B, C, D đồng phẳng, trái giả thiết ABCD là tứ diện.
Vậy CM và DN chéo nhau.
Cho tứ diện có cạnh
. Mặt phẳng
song song với
cắt tứ diện tạo thành một hình thoi. Tính độ dài cạnh hình thoi.
Hình vẽ minh họa
Gọi M, N, P, Q lần lượt là giao điểm của mặt phẳng chứa thiết diện với các cạnh AC, BC, BD, AD, khi đó theo giả thiết tứ giác MNPQ là hình thoi.
Cũng từ giả thiết ta suy ra nên ta có
Vậy cạnh của hình thoi là
Cho hình chóp tam giác . Gọi điểm
là trung điểm của
, lấy điểm
di động trên đoạn
. Mặt phẳng
qua
song song với
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với các mặt của tứ diện.
Hình vẽ minh họa
Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.
Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.
Thiết diện là tam giác MNP.
Ta có:
Vậy hình tạo bởi các giao tuyến của mặt phẳng với tứ diện là tam giác MNP cân tại M.
Cho các đường thẳng và các mặt phẳng
. Giả thiết nào sau đây đủ để kết luận đường thẳng
song song với đường thẳng
?
Nếu thì a // b hoặc a, b chéo nhau.
Nếu thì a // b hoặc a ≡ b.
Nếu thì không kết luận được quan hệ giữa a và b.
Cho hình chóp tứ giác . Gọi
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Xét có
lần lượt là trung điểm
=> là đường trung bình của
=> mà
Cho mặt phẳng và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là:
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Cho hình hộp . Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa
Mặt phẳng song song với mặt phẳng
.
Vì và
.
Cho hình lập phương . Gọi
, các điểm
lần lượt là trung điểm của
. Xác định các giao tuyến của mặt phẳng
với các mặt của hình lập phương. Hỏi hình tạo thành bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa
Ta có: MN // AC nên (MNP) ∩ (ACC’A’) = Px // AC // MN, gọi Q = Px ∩ AA’, Px ∩ OO’ = I.
Mà P là trung điểm của CC’ nên Q, I lần lượt là trung điểm của AA’, OO’.
Xét mặt phẳng (BDD’B’) gọi IJ ∩ B’D’ = H.
Theo tính chất đối xứng của hình lập phương và J là trung điểm của BO nên H là trung điểm của D’O’. (MNP) // AC // A’C’ nên (MNP) ∩ (A’B’C’D’) = Hy // A’C’.
Gọi E = Hy ∩ A’D’, F = Hy ∩ C’D’.
Khi đó hình tạo thành bởi các giao tuyến đó là lục giác MNPFEQ.
Chọn khẳng định đúng.
Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”
Cho hình chóp có đáy
là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa:
Ta có:
,
đi qua
và
.
Vậy giao tuyến của hai mặt phẳng và
song song với đường thẳng
.