Biết hai biến cố độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Biết hai biến cố độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:
Biến cố đối của biến cố B là : “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Ta có các kết quả thuận lợi cho biến cố A như sau:
Thùng 1 lấy ra 1 viên bi trắng, thùng 2 lấy được 1 viên bi trắng có: cách.
Thùng 1 lấy ra 1 viên bi đỏ, thùng 2 lấy được 1 viên bi đỏ có: cách.
Thùng 1 lấy ra 1 viên bi xanh, thùng 2 lấy được 1 viên bi xanh có: cách.
Suy ra số phần tử của biến cố A là:
Thực hiện gieo hai lần một con xúc xắc cân đối và đồng chất. Gọi A là biến cố xuất hiện ít nhất một lần mặt năm chấm. Tính xác suất của biến cố A?
Ta có: và A là biến cố xuất hiện ít nhất một lần mặt năm chấm
Suy ra là biến cố không lần nào xuất hiện mặt năm chấm.
Ta có:
Trong kho hàng có sản phẩm công nghệ, trong đó có một số sản phẩm bị lỗi. Giả sử
là biến cố sản phẩm thứ
bị lỗi với
. Biến cố
cả n sản phẩm đều tốt là:
Ta có:
là biến cố sản phẩm thứ
bị lỗi với
Nên là biến cố sản phẩm thứ
tốt với
Biến cố cả n sản phẩm đều tốt là:
Trong một phép thử có không gian mẫu kí hiệu là và
là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?
Khẳng định sai là: “ khi và chỉ khi
chắc chắn”.
Vì B là biến cố chắc chắn thì P(B) = 1.
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi là biến cố cung thủ bắn trúng lần thứ
. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố
.
Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu
Khi đó là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có:
Lớp 11A chọn ngẫu nhiên 1 học sinh trong lớp để tham gia hoạt động đoàn trường. Xét hai biến cố:
Biến cố A: “Học sinh đó là nam”
Biến cố B: “Học sinh đó là học sinh giỏi”
Khẳng định nào sau đây đúng khi mô tả biến cố ?
Ta có:
: Học sinh đó là học sinh nam hoặc là học sinh giỏi
Ba bạn A, B, C độc lập với nhau thi ném phi tiêu vào cùng một bia. Biết xác xuất ném trúng của A, B, C lần lượt là và
. Tính xác suất để có ít nhất một người ném trúng bia?
Gọi A, B, C tương ứng là biến cố A ném trúng bia, B ném trúng bia và C ném trúng bia
A, B, C là các biến cố độc lập. Do đó A, B, C là các biến cố đôi một độc lập
Xác suất để cả ba người đều không ném trúng là:
Hai máy cơm cùng bơm nước vào một bể chứa, chúng hoạt động độc lập với nhau. Xác suất để máy bơm 1 bị hỏng là , xác suất để máy bơm 2 bị hỏng là
. Biết nếu cả hai máy bơm bị hỏng sẽ không đáp ứng đủ nước tiêu dùng cho hộ gia đình. Tính xác suất để hộ gia đình có đủ nước dùng?
Gọi A là biến cố máy bơm 1 bị hỏng và B là biến cố máy bơm 2 bị hỏng
Suy ra AB là biến cố cả hai máy bơm bị hỏng => Gia đình không đủ nước dùng.
Lại thấy hai máy bơm hoạt động độc lập nên A và B là hai biến cố độc lập.
Áp dụng quy tắc nhân xác suất ta được xác suất để hộ gia đình không đủ nước dùng là:
Vậy xác suất để hộ gia đình có đủ nước dùng là
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?
Gọi B là biến cố có ít nhất một tấm thẻ xanh
Suy ra là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.
Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?
21772800
Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?
21772800
Đánh số thứ tự các nhóm là A, B, C, D
Bước 1: xếp vào mỗi nhóm một học sinh giỏi có 4! Cách.
Bước 2: xếp 5 học sinh khá vào 4 nhóm thì 1 nhóm có 2 học sinh khá và 3 nhóm có 1 học sinh khá.
Chọn nhóm có 2 học sinh khá có 4 cách, chọn 2 học sinh khá có cách, xếp 3 học sinh khá còn lại có 3! cách.
Bước 3: xếp 7 học sinh trung bình
+ Nhóm có 2 học sinh khá cần xếp vào đó 1 học sinh trung bình, có 7 cách chọn học sinh.
+ Nhóm có 1 học sinh khá cần xếp vào đó 2 học sinh trung bình.
Chọn nhóm 2 học sinh trung bình trong 6 học sinh và xếp vào 3 nhóm có cách.
Chọn nhóm 2 học sinh trung bình trong nhóm học sinh và xếp vào 2 nhóm có cách.
Xếp 2 học sinh trung bình còn lại có 1 cách.
Do đó số cách sắp xếp là:
Vậy
Hai người đi săn cùng bắn vào một con mồi. Gọi A là biến cố người thứ nhất bắn trúng con mồi. B là biến cố người thứ hai bắn trúng con mồi. Mối quan hệ giữa hai biến cố A và B là:
Hai biến cố A và B là hai biến cố độc lập vì việc người thứ nhất bắn trúng con mồi không phụ thuộc vào người thứ hai bắn trúng con mồi.