Hàm số nào tương ứng với đồ thị trong hình vẽ sau:
Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:
Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
là trung điểm của cạnh
. Mặt phẳng
chứa
và song song với
cắt các cạnh
lần lượt tại
. Tìm khẳng định đúng dưới dây?
Hình vẽ minh họa:
Ta có: là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó:
Dễ thấy E là trọng tâm tam giác SAC nên
Cho hình chóp có đáy
là hình bình hành. Lấy điểm
, mặt phẳng
đi qua
và song song với
. Giao điểm của mặt phẳng
với các cạnh
lần lượt tại
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Cho tứ diện có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Tìm tập xác định của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Hãy liệt kê năm số hạng đầu của dãy số có số hạng tổng quát
?
Ta có:
Vậy năm số hạng đầu tiên của dãy số là
Kết luận nào đúng về tập nghiệm của phương trình ?
Ta có:
Vậy tập nghiệm của phương trình đã cho là .
Cho hình chóp . Trên các cạnh
và
lần lượt lấy các điểm
sao cho
. Hỏi
song song với mặt phẳng nào dưới đây?
Hình vẽ minh họa:
Ta có: là đường trung bình của tam giác ABD suy ra MN//BD
Mặt khác
Hàm số có tất cả bao nhiêu giá trị nguyên?
Phương trình đã cho dạng phân thức, ta cần tìm điều kiện để phân thức có nghĩa, tức là tìm điều kiện của biểu thức dưới mẫu khác 0. Sau đó áp dụng giải PT bậc nhất đối với sin (x) và cos (x).
Ta có
Điều kiện để phương trình có nghiệm
nên có 2 giá trị nguyên.
Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?
Trong 1 giây bánh xe quay được vòng
Suy ra trong 2 giây bánh xe quay được vòng
Vậy góc bánh xe quay được là:
Tính giá trị lớn nhất của hàm số
Ta có:
Áp dụng bất đẳng thức
Do đó
Dấu bằng xảy ra khi
Cho tam giác có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Khẳng định nào dưới đây đúng?
Đáp án: “Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói a và b chéo nhau” đúng vì theo định nghĩa hai đường thẳng chéo nhau.
Đáp án: “Hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau” sai vì hai đường thẳng đó chưa chắc đã phân biệt.
Đáp án: “Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau” sai vì hai đường thẳng đó có thể chéo nhau.
Đáp án: “Hai đường thẳng song song với nhau nếu chúng không có điểm chung” sai vì hai đường thẳng đó có thể chéo nhau.
Cho cấp số cộng có số hạng đầu và công sai lần lượt là
. Số hạng thứ
bằng:
Ta có:
Cho tam giác có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Cho một cấp số cộng có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Cho hình chóp có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Xác định giao tuyến hai mặt phẳng
và
?
Hình vẽ minh họa:
Ta có: suy ra tứ giác AMCN là hình bình hành.
Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.
Ta có:
Mặt khác
Từ và
Cho tam giác . Khẳng định nào sau đây sai?
Ta có:
Do đó
Vậy khẳng định sai là:
Biết . Tính
?
Ta có:
Lại có
Vì
Phương trình có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Cho hình chóp có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Xác định nghiệm của phương trình ?
Ta có:
Vậy phương trình đã cho có nghiệm .
Khẳng định nào sau đây đúng?
Đáp án: “Qua hai điểm phân biệt xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua hai điểm đã cho.
Đáp án: “Qua ba điểm phân biệt bất kì xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua ba điểm phân biệt thẳng hàng.
Đáp án: “Qua bốn điểm phân biệt bất kì chỉ xác định được duy nhất một mặt phẳng” sai vì trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì không có mặt phẳng nào đi qua 4 điểm đó.
Vậy khẳng định đúng là: “Qua ba điểm không thẳng hàng xác định duy nhất một mặ
Cho hình chóp có đáy
là hình thang
. Lấy một điểm
thuộc cạnh
. Mặt phẳng
qua M song song với SA và BC. Giả sử
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Trong mặt phẳng (ABCD) kéo dài AD cắt MN tại E.
Ta lại có: suy ra
Biết rằng với
và
tối giản. Khi đó kết quả nào sau đây đúng?
Ta có:
Tìm tập nghiệm của phương trình ?
Điều kiện:
Ta có:
Kết hợp với điều kiện suy ra phương trình có nghiệm
Vậy phương trình có tập nghiệm là:
Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).
Công thức đúng là:
Chọn khẳng định đúng?
Xét đáp án “Hai đường thẳng phân biệt lần lượt chứa trong hai mặt phẳng khác nhau thì chéo nhau” hai đường thẳng đó có thể song song với nhau do đó đáp án sai.
Xét đáp án “Hai đường thẳng phân biệt cùng nằm trong cùng một mặt phẳng thì không chéo nhau” hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không thể chéo nhau do đó đáp án đúng.
Xét đáp án “Hai đường thẳng phân biệt không song song thì chéo nhau” hai đường thẳng đó có thể cắt nhau do đó đáp án sai.
Xét đáp án “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” hai đường thẳng đó có thể song song với nhau do đó đáp án sai.
Cho tứ diện . Gọi
là trọng tâm tam giác
là trung điểm
là điểm ở trên đoạn thẳng
cắt mặt phẳng
tại
. Khẳng định nào sau đây sai?
Ta có là điểm chung thứ nhất giữa hai mặt phẳng
và
.
Do
là điểm chung thứ hai giữa hai mặt phẳng
và
nên
đúng.
thẳng hàng nên
thẳng hàng đúng
Ta có nên
đúng.
Điểm di động trên
nên
có thể không phải là trung điểm của
Nên là trung điểm của
sai.
Cho cấp số nhân có công bội âm. Biết
. Khi đó
Ta có:
Cho tứ diện có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Một chất điểm chuyển động trên một đường tròn đường kính 80cm. Biết chất điểm chạy được 5 vòng. Tính quãng đường chuyển động của chất điểm?
Ta có:
Cho dãy số (un) biết . Các giá trị của a để dãy số (un) tăng là?
Xét hiệu un + 2 − un + 1
= aun + 1 + (1−a)un − un + 1
= (a−1)(un + 1−un)
⇒ u3 − u2 = (a−1)(u2−u1) = (a−1);
⇒ u4 − u3 = (a−1)(u3−u2) = (a−1)2
un + 1 − un = (a−1)n − 1 > 0
Để dãy số (un) tăng suy ra a − 1 > 0 ⇔ a > 1
Dãy số nào là cấp số nhân?
Theo bài ra ta có:
(loại)
(loại)
(thỏa mãn)
(loại)
Cho hàm số . Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?
Tập xác định:
Hàm số tuần hoàn với chu kì
, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên
Dựa vào kết quả khảo sát sự biến thiên của hàm số phần lí thuyết ta có thể suy ra với hàm số
đồng biến trên khoảng
và
.
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Cho dãy số có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”
Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình ?
Điều kiện xác định:
Ta có:
Kết hợp với điều kiện xác định suy ra phương trình có nghiệm nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Tính giá trị biểu thức . Biết
?.
Ta có:
Đổi số đo của góc sang radian được kết quả là:
Ta có:
Cho tập hợp . Số tập hợp con của tập hợp
gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:
Gọi ba phần tử thỏa mãn yêu cầu bài toán là với
lập thành một cấp số nhân
Suy ra lập thành một cấp số cộng
Thấy rằng a và c phải cùng tính chẵn lẻ.
Khi đó số tập con thỏa mãn yêu cầu bài toán là
Cho tứ diện ,
sao cho
. Gọi
là trọng tâm tam giác
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Gọi P là trung điểm của AD.
Ta có:
Mà
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình .
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Cho hàm số . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Biết rằng . Mệnh đề nào sau đây đúng?
Ta có:
Xét trên đường tròn lượng giác ta thấy thuộc góc phần tư thứ II nên ta có:
Cho tứ giác có
là giao điểm của
. Lấy một điểm
bất kì không thuộc
, một điểm
bất kì thuộc cạnh
. Gọi
là giao điểm của
và
. Khi đó giao điểm của
và mặt phẳng
là:
Hình vẽ minh họa
Chọn mặt phẳng phụ (SBD) chứa SD.
Tìm giao tuyến của hai mặt phẳng (SBD) và ( ABM ).
Ta có B là điểm chung thứ nhất của (SBD) và ( ABM ).
Trong mặt phẳng ( ABCD) có
Trong mặt phẳng (SAC) có
Suy ra
Trong mặt phẳng (SBD) gọi và do
Cho cấp số cộng có
. Tìm công sai
của cấp số cộng?
Gọi d là công sai của cấp số cộng khi đó ta có:
Cho hình chóp có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Biết rằng
. Khi đó điểm E là giao điểm của hai đường thẳng:
Hình vẽ minh họa:
Ta có:
Cho dãy số có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.