Hai mặt phẳng vuông góc với nhau khi và chỉ khi
Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.
Hai mặt phẳng vuông góc với nhau khi và chỉ khi
Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm SC. Tính góc ϕ giữa hai mặt phẳng (MBD) và (ABCD).
Hình vẽ minh họa:
Gọi M’ là trung điểm OC.
Khi đó MM’ // SO => MM’ ⊥ (ABCD).
Theo công thức diện tích hình chiếu, ta có:
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh bằng 2a. Hình chiếu của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60◦. Gọi ϕ là góc giữa hai mặt phẳng (BCC’B’) và (ABC). Tính cos ϕ.
Hình ảnh minh họa:
Gọi M là trung điểm của BC, suy ra
Gọi K là điểm đối xứng của H qua B, suy ra B’K // A’H, suy ra B’K ⊥ (ABC).
Trong (ABC), dựng BI ⊥ BC (với I ∈ BC).
Khi đó, góc giữa hai mặt phẳng (BCC’B’) và (ABC) là góc KIB’.
Do tứ giác AHKB’ là hình bình hành nên B’K = A’H = AH . tan 60◦ =
Ta có: KI = d(H, BC) = d(A,BC)/2 = AM/2 =
Xét ∆B’IK vuông tại K ta có:
Cho hình lập phương ABCD.A’B’C’D. Mặt phẳng (A’BCD’) vuông góc với mặt phẳng:
Hình vẽ minh họa:
Dễ thấy:
Do đó: (ADC’B’)⊥(A’BCD’)
Vậy mặt phẳng (A’BCD’) vuông góc với mặt phẳng (ADC’B’).
Cho tứ diện ABCD với các đường thẳng AB, BC, CD đôi một vuông góc. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng:
Như vậy góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng AC và BC, tức là bằng góc
Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).
Hình vẽ minh họa:
Ta có:
Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)
Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.
Ta có:
Lại có:
Từ (1), (2), (3) =>
Mệnh đề nào sau đây đúng?
Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau” sai vì hai mặt phẳng đó có thể cắt nhau.
Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì vuông góc với nhau.“ sai vì hai mặt phẳng đó có thể tạo với nhau những góc khác 900.
Dễ thấy mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng song song với một đường thẳng.” đúng.
Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng vuông góc với một đường thẳng.“ sai vì trong trường hợp mặt phẳng (P) và mặt phẳng (Q) cùng vuông góc với mặt phẳng (R), (P) ⊥ (Q) thì không thể có đường thẳng nào cùng vuông góc với (P) và (Q).
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết AB = 2AD = 2DC = 2a, góc giữa hai mặt phẳng (SAB) và (SBC) là 60◦. Độ dài cạnh SA là:
Hình vẽ minh họa:
Gọi E là trung điểm của AB.
Ta dễ dàng chứng minh được ABCE là hình vuông
Trong (SAB) kẻ HE ⊥ SB ta có:
Xét tam giác vuông CEH có EH = CE. cot 60◦ =
Ta có ∆SAB ∼ ∆EHG (g - g)
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song hoặc trùng nhau.
Mệnh đề “Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Nếu đường thẳng vuông góc với mặt phẳng cho trước thì có vô số mặt phẳng qua đường thẳng và vuông góc với mặt phẳng đó. Nếu đường thẳng không vuông góc với mặt phẳng cho trước thì không có mặt phẳng nào vuông góc với mặt phẳng đó.
Mệnh đề “Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao truyến vuông góc với mặt phẳng kia).
Vậy mệnh đề đúng là: “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.”
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, SA ⊥ (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) là:
Hình vẽ minh họa:
Ta có:
Hai mặt phẳng (ABCD) và (SBD) cắt nhau theo giao tuyến BD.
Lại có AO nằm trong (ABCD) và vuông góc với BD tại O
Mà SO nằm trong (SBD) và vuông góc với BD tại O.
=> Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng góc giữa hai đường thẳng OA và OS, tức là góc
Cho hình chóp S.ABC có đáy ABC là một tam giác vuông cân tại B với trọng tâm G, cạnh bên SA tạo với đáy (ABC) một góc 30◦. Biết hai mặt phẳng (SBG) và (SCG) cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SA và BC.
Hình vẽ minh họa:
Hai mặt phẳng (SBG) và (SCG) cùng vuông góc với mặt phẳng (ABC) nên SG ⊥ (ABC).
Gọi cạnh AB = BC = a
Từ G kẻ GE// BC (E ∈ AB), từ E kẻ EF // SA (F ∈ SB) suy ra (SA, BC) = (EF, EG)
Xét tam giác EFG ta có:
Khi đó:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA = và vuông góc với (ABCD). Tính cosin của góc giữa (SBC) và (SCD).
Hình vẽ minh họa:
Gọi H, N lần lượt là trung điểm của SC, AB.
Ta có CN = 1/2 AB suy ra tam giác ABC vuông cân tại C.
Suy ra:
Do tam giác SAC vuông cân tại A nên AH = a.
Kẻ AK ⊥ SD. Khi đó:
=> ((SBC), (SCD)) = (AH, AK) = = ϕ
Xét tam giác vuông SAD có:
Xét tam giác vuông AKH ta có:
Mệnh đề nào đúng trong các mệnh đề sau?
Mệnh đề: “Góc giữa hai mặt phẳng luôn là góc nhọn” sai vì góc giữa hai mặt phẳng có thể là góc vuông.
Mệnh đề: ”Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) khi (Q) // (R) (hoặc mặt phẳng (Q) trùng với mặt phẳng (R))” đúng.
Mệnh đề: “Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) thì (Q) song song với (R)” sai vì hai mặt phẳng (R) và (Q) có thể trùng nhau.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (P) ⊃ a, (P) // b và (Q) ⊃ b, (Q) // a thì (P) // (Q).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
Lại có AH ⊥ SB. Từ đó suy ra AH ⊥ (SBC) => AH ⊥ SC. (1)
Lại có theo giả thiết SC ⊥ AK. (2)
Từ (1) và (2) => SC ⊥ (AHK) => (SBC) ⊥ (AHK).
Ta có:
Dùng phương pháp loại trừ thì khẳng định “Tam giác IAC đều” là sai