Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:
Độ dài của nhóm là:
Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:
Độ dài của nhóm là:
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.
Chiều cao (cm) | Số học sinh |
(120; 125] | 3 |
(125; 130] | 5 |
(130; 135] | 11 |
(135; 140] | 6 |
(140; 145] | 5 |
Tổng | N = 30 |
Tính tứ phân vị thứ ba. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
Tổng | N = 30 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là (135; 140]
Khi đó:
Vậy tứ phân vị thứ ba là:
Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:
Điểm |
Số học sinh |
(20; 30] |
1 |
(30; 40] |
1 |
(40; 50] |
10 |
(50; 60] |
11 |
(60; 70] |
5 |
(70; 80] |
2 |
Tìm trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Điểm |
Số học sinh |
Tần số tích lũy |
(20; 30] |
1 |
1 |
(30; 40] |
1 |
2 |
(40; 50] |
10 |
12 |
(50; 60] |
11 |
23 |
(60; 70] |
5 |
28 |
(70; 80] |
2 |
30 |
Tổng |
N = 30 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Quan sát bảng sau và tìm mốt.
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) |
Tần số | 8 | 12 | 22 | 17 |
Quan sát bảng dữ liệu ta thấy mốt của mẫu dữ liệu nằm trong khoảng [30; 40)
Khi đó:
Vậy mốt của dữ liệu là:
Tìm số trung bình của mẫu số liệu sau:
Thời gian (s) | Thời gian đại diện (s) |
(50,5; 55,5] | 53 |
(55,5; 60,5] | 58 |
(60,5; 65,5] | 63 |
(65,5; 70,5] | 68 |
(Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Thời gian (s) | Thời gian đại diện (s) | Số vận động viên (người) | Tích các giá trị |
(50,5; 55,5] | 53 | 2 | 106 |
(55,5; 60,5] | 58 | 7 | 406 |
(60,5; 65,5] | 63 | 8 | 504 |
(65,5; 70,5] | 68 | 4 | 272 |
| Tổng | 21 | 1288 |
Số trung bình của mẫu dữ liệu ghép nhóm là:
Tính tứ phân vị thứ nhất cho dữ liệu dưới đây:
Cân nặng (kg) | [32; 35) | [35; 38) | [38; 41) | [41; 44) | [44; 47) |
Số người | 14 | 60 | 95 | 24 | 7 |
Ta có:
Cân nặng (kg) | [32; 35) | [35; 38) | [38; 41) | [41; 44) | [44; 47) |
Số người | 14 | 60 | 95 | 24 | 7 |
Tần số tích lũy | 14 | 74 | 169 | 193 | 200 |
Ta có:
=> Nhóm chứa là [35; 38)
Khi đó ta tìm được các giá trị:
Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số
Số các số có 1 chữ số là: 3
Số các số có 2 chữ số là: 32 = 9
Số các số có 3 chữ số là: 33 = 27
=> Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39
Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.
Theo bài ra ta có 5 ban nhạc đến từ các trường
Chọn ban nhạc Nha Trang biểu diễn đầu tiên
=> Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách
=> Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn có đúng một người nữ"
=>
=> Xác suất sao cho 2 người được chọn có đúng một người nữ là:
Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
- Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
Ví dụ về số nguyên tố như: 2, 3, 5, 7, 11, 13, 17, ….
Lấy một số từ dãy số đã cho ta được:
Giả sử A là biến cố "lấy được một số nguyên tố"
Ta có: A = {2} =>
=> Xác suất để lấy được một số nguyên tố là:
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:
Số phần tử không gian mẫu là: 52
Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích
=> Số lá bích trong bộ bài là 13 lá
=> Xác suất để được lá bích là:
Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau được lập từ các số ?
Mỗi cách xếp số tự nhiên có 5 chữ số khác nhau từ các số 1, 2, . . . , 9 là một chỉnh hợp chập 5 của 9 phần tử.
Vậy có số được tạo thành.
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3
Gieo hai con súc sắc cân đối và đồng chất
=> Số phần tử không gian mẫu là:
Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"
Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)
Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị
=>
=> Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là: