Luyện tập Giới hạn dãy số Cánh Diều

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng cao
    Tính lim

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2;u_{2} = 4 \\
u_{n + 2} = 2u_{n + 1} - u_{n} + 5;(n \geq 1) \\
\end{matrix} ight.. Tính \lim_{n ightarrow\infty}\dfrac{u_{n}}{n^{2}}.

    Hướng dẫn:

    Ta có:

    \begin{matrix}
  {u_{n + 2}} = 2{u_{n + 1}} - {u_n} + 5 \hfill \\
   \Rightarrow {u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} + 5 \hfill \\ 
\end{matrix}

    Đặt \Rightarrow v_{n} = u_{n + 1} - u_{n}
\Rightarrow v_{n + 1} = v_{n} + 5;(n \geq 1)

    Từ đó:

    \begin{matrix}
  {u_2} - {u_1} = 2 \hfill \\
  {u_3} - {u_2} = 7 \hfill \\
  {u_4} - {u_3} = 12 \hfill \\
  ... \hfill \\
  {u_{n + 1}} - {u_n} = 5n - 3 \hfill \\ 
\end{matrix}

    Khi đó:

    \begin{matrix}
  {u_{n + 1}} - {u_1} = 2 + 7 + 12 + ... + \left( {5n - 3} ight) \hfill \\
   = \dfrac{{n\left[ {2 + \left( {5n - 3} ight)} ight]}}{2} = \dfrac{{n\left( {5n - 1} ight)}}{2} \hfill \\ 
\end{matrix}

    Từ đó ta có:

    \begin{matrix}
  {u_{n + 1}} = \dfrac{{n\left( {5n - 1} ight)}}{2} + {u_1} \hfill \\
   = \dfrac{{n\left( {5n - 1} ight)}}{2} + 2 = \dfrac{{5{n^2} - n + 4}}{2} \hfill \\ 
\end{matrix}

    Vậy u_{n} = \frac{5n^{2} - 11n +
10}{2}

    => \lim_{n ightarrow
\infty}\frac{u_{n}}{n^{2}} = \lim_{n ightarrow \infty}\left(
\frac{5n^{2} - 11n + 10}{2} ight) = \frac{5}{2}

  • Câu 2: Vận dụng cao
    Tính tổng T

    Dãy số (un) xác định bởi \left\{ \begin{matrix}u_{1} = \dfrac{1}{3} \\u_{n + 1} = \dfrac{n + 1}{3n}.u_{n} \\\end{matrix} ight. và dãy số (vn) xác định bởi \left\{ \begin{matrix}v_{1} = u_{1} \\v_{n + 1} = v_{n} + \dfrac{u_{n}}{n} \\\end{matrix} ight.. Tính \lim
v_{n}.

    Hướng dẫn:

    Ta có:

    u_{n + 1} = \frac{n + 1}{3n}.u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} =
\frac{1}{3}.\frac{u_{n}}{3n} nên dãy \left( \frac{u_{n}}{n} ight)là cấp số nhân với công bội q =
\frac{1}{3}

    Lại có: v_{n + 1} = v_{n} +
\frac{u_{n}}{n} \Leftrightarrow v_{n + 1} - v_{n} =
\frac{u_{n}}{n}, khi đó ta có:

    \begin{matrix}
  {v_2} - {v_1} = \dfrac{{{u_1}}}{1} \hfill \\
  {v_3} - {v_2} = \dfrac{{{u_2}}}{2} \hfill \\
  ..... \hfill \\
  {v_{n + 1}} - {v_n} = \dfrac{{{u_n}}}{n} \hfill \\ 
\end{matrix}

    Cộng vế theo vế ta được

    \begin{matrix}
  {v_{n + 1}} - {v_n} = \dfrac{{{u_1}}}{1} + \dfrac{{{u_2}}}{2} + ... + \dfrac{{{u_n}}}{n} \hfill \\
   = \dfrac{{{u_1}\left[ {1 - {{\left( {\dfrac{1}{3}} ight)}^n}} ight]}}{{1 - \dfrac{1}{3}}} \hfill \\ 
\end{matrix}

    Do đó: v_{n + 1} =
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ v_{1} = \frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack + \frac{1}{3}

    => \lim v_{n} = \lim\left\{
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ \frac{1}{3} ight\} = \frac{5}{6}

  • Câu 3: Vận dụng
    Tính giá trị của a

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -
\sqrt{n^{2} + 1} trong đó a là tham số thực. tìm a để \lim u_{n} = - 1

    Hướng dẫn:

    Ta có:

    \lim u_{n} = \lim\left( \sqrt{n^{2} +
a.n + 5} - \sqrt{n^{2} + 1} ight)

    = \lim\left( \frac{a.n + 4}{\sqrt{n^{2}
+ a.n + 5} + \sqrt{n^{2} + 1}} ight)

    = \lim\left( \dfrac{a +\dfrac{4}{n}}{\sqrt{1 + \dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 +\dfrac{1}{n^{2}}}} ight) = \dfrac{a}{2}

    Ta có: \lim u_{n} = - 1

    \Leftrightarrow \frac{a}{2} = - 1
\Rightarrow a = - 2

  • Câu 4: Vận dụng
    Tìm các giá trị nguyên của tham số a

    Tìm các giá trị nguyên của a thuộc (0;20)sao cho \lim\sqrt{3 + \frac{a.n^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là một số nguyên?

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}\lim\left( \dfrac{a.n^{2} - 1}{3 + n^{2}} ight) = \lim\dfrac{a -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = a \\\lim\left( \dfrac{1}{2^{n}} ight) = \lim\left( \dfrac{1}{2} ight)^{n}= 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{a.n^{2}
- 1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + a}

    Ta có: \left\{ \begin{matrix}
a \in (0;20),a\mathbb{\in Z} \\
\sqrt{a + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow a \in \left\{ 1;6;13
ight\}

    Vậy có ba giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 5: Thông hiểu
    Kết quả của giới hạn

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu
    Giới hạn dãy số bằng với số nào sau đây

    \lim\sqrt{4-\frac{\cos2n}{n}} bằng số nào sau đây?

    Hướng dẫn:

    Ta có: 0 \leqslant \left| {\frac{{\cos 2n}}{n}} ight| \leqslant \frac{1}{n} \to 0

    \Rightarrow \lim \sqrt {4 - \frac{{\cos 2n}}{n}}  = 2

  • Câu 7: Thông hiểu
    Giới hạn nào bằng -1

    Trong giới hạn sau đây, giới hạn nào bằng -1?

    Hướng dẫn:

    Ta có:

    \lim \frac{{2{n^2} - 3}}{{ - 2{n^3} - 4}} = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^3}}}}}{{ - 2 - \frac{4}{{{n^3}}}}} = 0

    \lim \frac{{2{n^2} - 3}}{{ - 2{n^2} - 1}} = \lim \frac{{2 - \frac{3}{{{n^2}}}}}{{ - 2 - \frac{1}{{{n^2}}}}} =  - 1

    \lim \frac{{2{n^2} - 3}}{{ - 2{n^3} + 2{n^2}}} = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^3}}}}}{{ - 2 - \frac{2}{n}}} = 0

    \lim \frac{{2{n^3} - 3}}{{ - 2{n^2} - 1}} = \lim \frac{{{n^3}\left( {2 - \frac{3}{{{n^3}}}} ight)}}{{ - {n^2}\left( {2 + \frac{1}{{{n^2}}}} ight)}} =  - \infty

  • Câu 8: Thông hiểu
    Tính giới hạn?

    Tính giới hạn của \lim\frac{1 + 3 + 5 + \ldots + (2n + 1)}{3n^{2} +
4}

    Hướng dẫn:

    Ta có:

    \lim\frac{1 + 3 + 5 + \ldots + (2n +1)}{3n^{2} + 4}

    = \lim\dfrac{n^{2}}{3n^{2} + 4}

    = \lim\dfrac{1}{3 +\dfrac{4}{n^{2}}} = \frac{1}{3}

  • Câu 9: Thông hiểu
    Tính giới hạn?

    Tính giới hạn: \lim\frac{\sqrt{n + 1} - 4}{\sqrt{n + 1} +n}

    Hướng dẫn:

    Ta có:

    \lim\frac{\sqrt{n + 1} - 4}{\sqrt{n + 1}+ n}

    = \lim\dfrac{\sqrt{\dfrac{1}{n}+ \dfrac{1}{n^{2}}} - \dfrac{4}{n}}{\sqrt{\dfrac{1}{n} + \dfrac{1}{n^{2}}} +1} = \dfrac{0}{1} = 0

  • Câu 10: Thông hiểu
    Tính giới hạn?

    Tính giá trị của giới hạn sau \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}} là?

    Hướng dẫn:

    Ta có:

    \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}}
= \lim\frac{10}{n^{2}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}}}

    Nhưng{\ \lim}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}} = 1\lim\frac{10}{n^{2}\ } = 0

    Nên \lim\frac{10}{\sqrt{n^{4} + n^{2} +
1}} = 0

  • Câu 11: Nhận biết
    Tính giá trị?

    Giá trị của C =
lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} bằng:

    Hướng dẫn:

    Ta có theo tính chất giới hạn, ta có:

    lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} =
0

  • Câu 12: Nhận biết
    Tìm giới hạn của B

    Giá trị của B =
\lim\frac{n.\sin n - 3n^{2}}{n^{2}} bằng:

    Hướng dẫn:

    Ta có:

    B = \lim\frac{n.\sin n - 3n^{2}}{n^{2}}
= \lim\frac{\frac{\sin n}{n} - 3}{1} = - 3

  • Câu 13: Nhận biết
    Tính?

    Giá trị của A =
\lim\frac{n - 2\sqrt{n}}{2n} bằng:

    Hướng dẫn:

    Ta có:

    A = \lim\frac{n - 2\sqrt{n}}{2n} =
\lim\frac{1 - \frac{1}{\sqrt{n}}}{2} = \frac{1}{2}

  • Câu 14: Nhận biết
    Tìm giới hạn của C

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Hướng dẫn:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

  • Câu 15: Nhận biết
    Tính giá trị

    Giá trị của B =
\lim\frac{2n + 3}{n^{2} + 1} bằng:

    Hướng dẫn:

    Với số thực a>0 nhỏ tùy ý, ta chọn \ \
n_{a} thỏa mãn:

    \frac{2n_{a} +
3}{n_{a}^{2} + 1} < a

    \Leftrightarrow n_{a} > \frac{1 +
\sqrt{a^{2} - 4a + 13}}{a}

    Ta có: \frac{2n + 3}{n^{2} + 1} < a\
với\ mọi\ n > n_{a}

    Suy ra  B =\lim\frac{2n + 3}{n^{2} + 1} =0 .

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1 lượt xem
Sắp xếp theo