Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a, . Tính góc giữa hai mặt phẳng (SCD) và (SAB).
Gọi M là trung điểm của AD.
Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a,
Suy ra ABCM là hình vuông => MC = AB = a
Xét tam giác ACD có AM là trung tuyến và
Suy ra ACD vuông tại C => AC ⊥ CD
Trong (SAC), dựng AH ⊥ SC
Ta có: mà AH ⊂ (SAC) suy ra CD ⊥ AH.
Ta có:
Ta có:
Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.
Xét tam giác ABC vuông tại B có:
Xét tam giác SAC vuông tại A có:
Xét tam giác SAC vuông tại A và nên SAC vuông cân tại A.
Suy ra H là trung điểm SC và
Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).
Ta có: suy ra
Vậy