Luyện tập Các quy tắc tính đạo hàm Cánh Diều

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \cot \sqrt {{x^2} + 1}

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y' = \dfrac{{\left( {\sqrt {{x^2} + 1} } ight)'}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} =  - \dfrac{{\dfrac{x}{{\sqrt {{x^2} + 1} }}}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\   =  - \dfrac{x}{{\sqrt {{x^2} + 1} .{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\ \end{matrix}

  • Câu 2: Nhận biết
    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \sin \left( {\frac{\pi }{6} - 3x} ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \sin \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{6} - 3x} ight).\left( {\dfrac{\pi }{6} - 3x} ight)\prime  \hfill \\   =  - 3\cos \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\ \end{matrix}

  • Câu 3: Nhận biết
    Hàm số liên tục trên khoảng

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    Hướng dẫn:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 4: Thông hiểu
    Tính đạo hàm lượng giác

    Tính đạo hàm của hàm số y = \sin \sqrt {{x^2} + 2}

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \sqrt {{x^2} + 2} } ight] \prime \hfill \\   \Rightarrow y' = \left( {\sqrt {{x^2} + 2} } ight)'.\cos \sqrt {{x^2} + 2}  \hfill \\   \Rightarrow y' = \dfrac{x}{{\sqrt {2 + {x^2}} }}.\cos \sqrt {{x^2} + 2}  \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu
    Xác định đạo hàm của hàm số lượng giác

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 6: Nhận biết
    Hàm số f(x) liên tục trên khoảng

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Hướng dẫn:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 7: Thông hiểu
    Tính đạo hàm

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \left( {\sin x} ight)} ight]\prime\hfill \\   \Rightarrow y' = \left( {\sin x} ight)'.\cos \left( {\sin x} ight) \hfill \\   \Rightarrow y' = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu
    Chọn khẳng định đúng

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 9: Thông hiểu
    Xác định đạo hàm của hàm số

    Đạo hàm của hàm số y=\frac{3}{x}+\frac{2}{x^{2}}-\frac{7}{x^{3}}+\frac{6}{x^{5}} bằng biểu thức nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \dfrac{3}{x} + \dfrac{2}{{{x^2}}} - \dfrac{7}{{{x^3}}} + \dfrac{6}{{{x^5}}} \hfill \\   \Rightarrow y' = \dfrac{{ - 3}}{{{x^2}}} - \dfrac{{2.2x}}{{{x^4}}} + \dfrac{{7.3.{x^2}}}{{{x^6}}} - \dfrac{{6.5.{x^4}}}{{{x^{10}}}} \hfill \\   = \dfrac{{ - 3}}{{{x^2}}} - \dfrac{4}{{{x^3}}} + \dfrac{{21}}{{{x^4}}} - \dfrac{{30}}{{{x^6}}} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu
    Tính đạo hàm

    Tính đạo hàm của hàm số: y = \sqrt {{x^2} - 4{x^3}}

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y' = \left( {\sqrt {{x^2} - 4{x^3}} } ight)\prime \hfill \\   = \dfrac{{\left( {{x^2} - 4{x^3}} ight)'}}{{2\sqrt {{x^2} - 4{x^3}} }} \hfill \\   = \dfrac{{2x - 12{x^2}}}{{2\sqrt {{x^2} - 4{x^3}} }} \hfill \\   = \dfrac{{x - 6{x^2}}}{{\sqrt {{x^2} - 4{x^3}} }} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu
    Xác định biểu thức đạo hàm

    Đạo hàm của hàm số y = \sqrt {{{\sin }^3}(2x + 1)} bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y = \sqrt {{{\sin }^3}(2x + 1)}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {{{\sin }^3}(2x + 1)} }}.\left[ {{{\sin }^3}\left( {2x + 1} ight)} ight]\prime  \hfill \\   = \dfrac{{2.3{{\sin }^3}\left( {2x + 1} ight).\cos \left( {2x + 1} ight)}}{{2\sqrt {{{\sin }^3}(2x + 1)} }} \hfill \\   = 3\sqrt {\sin \left( {2x + 1} ight)} .\cos \left( {2x + 1} ight) \hfill \\ \end{matrix}

  • Câu 12: Nhận biết
    Tính đạo hàm của hàm số

    Đạo hàm của hàm số y=-\frac{x^{3}}{3}+\frac{x^{2}}{2}-x+5 bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y =  - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - x + 5 \hfill \\   \Rightarrow y' =  - \dfrac{{3{x^2}}}{3} + \dfrac{{2x}}{2} - 1 \hfill \\   \Rightarrow y' =  - {x^2} + x - 1 \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu
    Tính đạo hàm

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

    Hướng dẫn:

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \left( {\sin x} ight)} ight]\prime\hfill \\   \Rightarrow y' = \left( {\sin x} ight)'.\cos \left( {\sin x} ight) \hfill \\   \Rightarrow y' = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 14: Nhận biết
    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \sin \left( {\frac{\pi }{6} - 3x} ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \sin \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{6} - 3x} ight).\left( {\dfrac{\pi }{6} - 3x} ight)\prime  \hfill \\   =  - 3\cos \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\ \end{matrix}

  • Câu 15: Nhận biết
    Tính đạo hàm của hàm số

    Đạo hàm của hàm số y=2x^{5}-3x^{4}+0,5x^{2}-\frac{3x}{2}-4 bằng biểu thức nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = 2{x^5} - 3{x^4} + 0,5{x^2} - \dfrac{{3x}}{2} - 4 \hfill \\   \Rightarrow y' = 10{x^4} - 12{x^3} + x - \dfrac{3}{2} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 2 lượt xem
Sắp xếp theo