Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Độ dài AD bằng:
Hình vẽ minh họa
Ta có:
=> Tam giác ABD vuông tại B.
Lại có nên tam giác BCD vuông tại C.
Khi đó:
Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Độ dài AD bằng:
Hình vẽ minh họa
Ta có:
=> Tam giác ABD vuông tại B.
Lại có nên tam giác BCD vuông tại C.
Khi đó:
Cho hình tứ diện ABCD có tất cả các cạnh bằng 6a. Gọi M, N lần lượt là trung điểm của CA, CB. Gọi P là điểm trên cạnh BD sao cho BP = 2PD. Diện tích S thiết diện của tứ diện ABCD bị cắt bởi (MNP) là:
Hình vẽ minh họa:
Trong mặt phẳng (ABD) qua P kẻ đường thẳng song song AB cắt AD tại Q.
Ta có:
Dễ thấy MN là đường trung bình của ∆ABC
=> MN // AB // PQ
=> 4 điểm M, N, P, Q đồng phẳng và MN = 3a
=> Thiết diện cần tìm chính là hinh thang MNPQ
Do tất cả các cạnh cạnh của tứ diện ABCD bằng 6a => ∆BNP = ∆AMQ.
Vậy MNPQ là hình thang cân.
Ta có:
Kẻ đường cao QI, ta có:
Cho hai đường thẳng phân biệt a, b và mặt phẳng (P) trong đó a ⊥ (P). Chọn mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Nếu a ⊥ b thì b // (P).”
Vì b có thể nằm trong (P).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA ⊥ (ABCD). Gọi I, J, K lần lượt là trung điểm của các cạnh AB, BC, SB. Khẳng định nào sau đây là khẳng định đúng?
Hình vẽ minh họa:
Xét tam giác SBC ta có:
=> KJ // SC (*)
Xét tam giác SAB ta có:
=> KI // SA (**)
Từ (*) và (**) => (IJK) // (SAC) (1)
Vì ABCD là hình vuông => BD ⊥ AC
Mà SA ⊥ BD => BD ⊥ (SAC)
Kết hợp với (1) => BD ⊥ (IJK)
=>
Cho hình tứ diện ABCD có AB, CD, BC đôi một vuông góc. Khi đó ta có:
Hình vẽ minh họa:
Ta có:
Ta có:
Nếu (Vô lí)
Nếu (Vô lí)
Nếu (Vô lí)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên và SA ⊥ (ABCD). Gọi α là góc giữa đường thẳng SC và mặt phẳng (SAB). Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Hình chiếu vuông góc của BC trên mặt phẳng (SAB) là SB
=>
Xét tam giác SAB vuông ta có:
Xét tam giác SBC vuông ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?
Hình vẽ minh họa:
Ta có: SA = SB = SC, G là trọng tâm tam giác ABC
=> G là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Gọi H là trung điểm của BC =>
Xét tam giác ABC đều cạnh a ta có:
Xét tam giác SBH vuông tại H ta có:
Xét tam giác SGH vuông tại G ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥(ABC). Kẻ AH ⊥ SB. Chọn khẳng định sai trong các khẳng định dưới đây?
Hình vẽ minh họa:
AB ⊥ BC (hiển nhiên đúng)
Ta có: SA ⊥(ABC) mà BC nằm trong (ABC) => SA ⊥ BC
Ta lại có:
Dễ thấy AH ⊥ AC là khẳng định sai.
Trong các mệnh đề sau, mênh đề nào đúng?
Mệnh đề: “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.” Sai vì nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này vuông góc với giao tuyến sẽ vuông góc với mặt phẳng kia.
Mệnh đề: “Hai mặt phẳng phân biệt vuông góc với một mặt phẳng thứ ba thì song song với nhau.” sai vì còn trường hợp hai mặt phẳng cắt nhau.
Mệnh đề: “Với mỗi điểm A ∊ (α) và mỗi điểm B ∊ (β) thì ta có đường thẳng AB vuông góc với giao tuyến d của (α) và (β).” Sai vì ít nhất nếu cả A và B đều thuộc giao tuyến của (α) và (β) thì AB trùng với (α) ⋂ (β).
Trong không gian cho đường thẳng Δ không nằm trong mặt phẳng (P), đường thẳng Δ gọi là vuông góc với mặt phẳng (P) nếu
Đường thẳng Δ được gọi là vuông góc với mặt phẳng (P) nếu Δ vuông góc với mọi đường thẳng nằm trong (P).
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “(P) là mặt phẳng trung trực của đoạn thẳng AB nếu nó đi qua ba điểm phân biệt cách đều A và B.”
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA ⊥ (ABCD). Chọn khẳng định sai trong các khẳng định sau?
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) => SA ⊥ BD
Mà ABCD là hình thoi nên AC ⊥ BD
=> BD ⊥ (SAC)
Mặt khác SO và SC thuộc mặt phẳng (SAC)
=> BD ⊥ SO, BD ⊥ SC
Và AD, SC là hai đường thẳng chéo nhau
=> AD ⊥ SC là khẳng định sai.
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Trong các mệnh đề sau, mệnh đề nào sai?
Qua một điểm cho trước có thể kẻ được vô số mặt phẳng vuông góc với mặt phẳng cho trước.
Cho hình chóp , có đáy là hình chữ nhật, . Gọi lần lượt là đường cao của tam giác và . Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì
Mà
Tam giác SAB có đường cao
Mà
Tương tự chứng minh ta được: